Sinus, cosinus en tangens
14 - 9 oefeningen
|
Cosinus (1)
007j - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=64\text{,}\) \(\angle A=42\degree\) en \(\angle B=90\degree\text{.}\) |
○ Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle A)={A\kern{-.8pt}B \over A\kern{-.8pt}C}\) ofwel \(\cos(42\degree)={A\kern{-.8pt}B \over 64}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}B=64⋅\cos(42\degree)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B≈47{,}6\text{.}\) 1p |
|
Cosinus (2)
007k - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=49\text{,}\) \(\angle Q=42\degree\) en \(\angle R=90\degree\text{.}\) |
○ Cosinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\cos(\angle Q)={Q\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\cos(42\degree)={49 \over P\kern{-.8pt}Q}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}Q={49 \over \cos(42\degree)}\text{.}\) 1p ○ Dus \(P\kern{-.8pt}Q≈65{,}9\text{.}\) 1p |
|
Cosinus (3)
007l - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=54\text{,}\) \(A\kern{-.8pt}C=75\) en \(\angle B=90\degree\text{.}\) |
○ Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle A)={A\kern{-.8pt}B \over A\kern{-.8pt}C}\) ofwel \(\cos(\angle A)={54 \over 75}\text{.}\) 1p ○ Hieruit volgt \(\angle A=\cos^{-1}({54 \over 75})\text{.}\) 1p ○ Dus \(\angle A≈43{,}9\degree\text{.}\) 1p |
|
Sinus (1)
007g - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=49\text{,}\) \(\angle Q=58\degree\) en \(\angle R=90\degree\text{.}\) |
○ Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle Q)={P\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\sin(58\degree)={P\kern{-.8pt}R \over 49}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}R=49⋅\sin(58\degree)\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R≈41{,}6\text{.}\) 1p |
|
Sinus (2)
007h - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=53\text{,}\) \(\angle L=57\degree\) en \(\angle M=90\degree\text{.}\) |
○ Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle L)={K\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\sin(57\degree)={53 \over K\kern{-.8pt}L}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}L={53 \over \sin(57\degree)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L≈63{,}2\text{.}\) 1p |
|
Sinus (3)
007i - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.4 Getal & Ruimte (13e editie) - 3 vwo - 6.4 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=47\text{,}\) \(L\kern{-.8pt}M=56\) en \(\angle K=90\degree\text{.}\) |
○ Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle M)={K\kern{-.8pt}L \over L\kern{-.8pt}M}\) ofwel \(\sin(\angle M)={47 \over 56}\text{.}\) 1p ○ Hieruit volgt \(\angle M=\sin^{-1}({47 \over 56})\text{.}\) 1p ○ Dus \(\angle M≈57{,}1\degree\text{.}\) 1p |
|
Tangens (1)
007m - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.3 Getal & Ruimte (13e editie) - 3 vwo - 6.3 |
|
3p Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=52\text{,}\) \(\angle L=38\degree\) en \(\angle M=90\degree\text{.}\) |
○ Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle L)={K\kern{-.8pt}M \over L\kern{-.8pt}M}\) ofwel \(\tan(38\degree)={K\kern{-.8pt}M \over 52}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M=52⋅\tan(38\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈40{,}6\text{.}\) 1p |
|
Tangens (2)
007n - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.3 Getal & Ruimte (13e editie) - 3 vwo - 6.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=46\text{,}\) \(\angle B=37\degree\) en \(\angle C=90\degree\text{.}\) |
○ Tangens in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\tan(\angle B)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\tan(37\degree)={46 \over B\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(B\kern{-.8pt}C={46 \over \tan(37\degree)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C≈61{,}0\text{.}\) 1p |
|
Tangens (3)
007o - Sinus, cosinus en tangens - basis - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 6.3 Getal & Ruimte (13e editie) - 3 vwo - 6.3 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=47\text{,}\) \(P\kern{-.8pt}Q=44\) en \(\angle P=90\degree\text{.}\) |
○ Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle R)={P\kern{-.8pt}Q \over P\kern{-.8pt}R}\) ofwel \(\tan(\angle R)={44 \over 47}\text{.}\) 1p ○ Hieruit volgt \(\angle R=\tan^{-1}({44 \over 47})\text{.}\) 1p ○ Dus \(\angle R≈43{,}1\degree\text{.}\) 1p |