De vergelijking van een lijn
2t - 11 oefeningen
|
LigtPuntOpLijn
00bj - De vergelijking van een lijn - basis - basis - 1ms
|
Getal & Ruimte (12e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (12e editie) - vwo wiskunde B - 4.vk Getal & Ruimte (12e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - 3 havo - 1.6 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - vwo wiskunde B - 4.1 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 | ||||||
|
Gegeven is de lijn \(l{:}\,4x+y=9\text{.}\) 1p Onderzoek of het punt \(A(5, -11)\) op \(l\) ligt. |
○ \(A(5, -11)\) invullen geeft \(4⋅5+1⋅-11=9=9\) 1p |
||||||
|
FormuleNaarVergelijking
00bn - De vergelijking van een lijn - basis - midden - 1ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 7.1 Getal & Ruimte (12e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (12e editie) - vwo wiskunde B - 7.1 Getal & Ruimte (12e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - havo wiskunde B - 1.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - vwo wiskunde B - 4.1 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 | ||||||
|
Gegeven is de formule \(l{:}\,y=4x-\frac{1}{4}\text{.}\) 2p Schrijf de formule in de vorm \(ax+by=c\) met \(a\text{,}\) \(b\) en \(c\) gehele getallen. |
○ Uit \(y=4x-\frac{1}{4}\) volgt \(-4x+y=-\frac{1}{4}\text{.}\) 1p ○ Vermenigvuldigen met \(-4\) geeft 1p |
||||||
|
VariabeleVrijmaken
00bm - De vergelijking van een lijn - basis - midden - 0ms
|
Getal & Ruimte (12e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (12e editie) - vwo wiskunde B - 4.vk Getal & Ruimte (12e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - 3 havo - 1.6 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - vwo wiskunde B - 4.1 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 | ||||||
|
Gegeven is de vergelijking \(l{:}\,2x+6y=-5\text{.}\) 1p Maak de variabele \(x\) vrij. |
○ Herleiden geeft 1p |
||||||
|
RichtingscoefficientBerekenen
00nl - De vergelijking van een lijn - basis - midden - 1ms
|
Getal & Ruimte (13e editie) - 3 havo - 1.6 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - vwo wiskunde B - 4.1 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 | ||||||
|
Gegeven is de vergelijking \(l{:}\,4x-5y=7\text{.}\) 2p Bereken de richtingscoëfficiënt van de lijn \(l\text{.}\) |
○ Herleiden naar \(y=ax+b\) geeft 1p ○ Dus \(\text{rc}_l=\frac{4}{5}\text{.}\) 1p |
||||||
|
GegevenXofYCoordinaat (1)
00nh - De vergelijking van een lijn - basis - midden - 0ms
|
Getal & Ruimte (13e editie) - havo wiskunde B - 1.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - vwo wiskunde B - 4.1 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 | ||||||
|
Gegeven is de lijn \(l{:}\,-8x+6y=52\text{.}\) 2p Voor welke \(a\) ligt het punt \(A(a, 2)\) op \(l\text{?}\) |
○ \(\begin{rcases}-8x+6y=52 \\ \text{door }A(a, 2)\end{rcases}\begin{matrix}-8⋅a+6⋅2=52\end{matrix}\) 1p ○ \(-8a+12=52\) 1p |
||||||
|
GegevenXofYCoordinaat (2)
00ni - De vergelijking van een lijn - basis - midden - 0ms
|
Getal & Ruimte (13e editie) - havo wiskunde B - 1.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - vwo wiskunde B - 4.1 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 | ||||||
|
Gegeven is de lijn \(l{:}\,-9x+3y=-42\text{.}\) 2p Voor welke \(a\) is \((x, y)=(6, a)\) een oplossing van de vergelijking van \(l\text{?}\) |
○ \(\begin{rcases}-9x+3y=-42 \\ (x, y)=(6, a)\end{rcases}\begin{matrix}-9⋅6+3⋅a=-42\end{matrix}\) 1p ○ \(-54+3a=-42\) 1p |
||||||
|
CoefficientBijGegevenPunt (1)
00nj - De vergelijking van een lijn - basis - eind - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 1.6 Getal & Ruimte (13e editie) - vwo wiskunde B - 4.1 | ||||||
|
Gegeven is de lijn \(l{:}\,ax+4y=-32\text{.}\) 2p Voor welke \(a\) gaat \(l\) door het punt \(A(8, 6)\text{?}\) |
○ \(\begin{rcases}ax+4y=-32 \\ \text{door }A(8, 6)\end{rcases}\begin{matrix}a⋅8+4⋅6=-32\end{matrix}\) 1p ○ \(8a+24=-32\) 1p |
||||||
|
CoefficientBijGegevenPunt (2)
00nk - De vergelijking van een lijn - basis - eind - 0ms
|
Getal & Ruimte (13e editie) - havo wiskunde B - 1.3 Getal & Ruimte (13e editie) - vwo wiskunde B - 4.1 | ||||||
|
Gegeven is de lijn \(l{:}\,4x+5y=c\text{.}\) 2p Voor welke \(c\) gaat \(l\) door het punt \(A(-8, 7)\text{?}\) |
○ \(\begin{rcases}4x+5y=c \\ \text{door }A(-8, 7)\end{rcases}\begin{matrix}4⋅-8+5⋅7=c\end{matrix}\) 1p ○ \(c=-32+35=3\text{.}\) 1p |
||||||
|
SnijpuntenMetAssen
00bi - De vergelijking van een lijn - basis - midden - 0ms
|
Getal & Ruimte (12e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (12e editie) - vwo wiskunde B - 4.vk Getal & Ruimte (12e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - 3 havo - 1.6 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - vwo wiskunde B - 4.1 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 | ||||||
|
Gegeven is de lijn \(l{:}\,14x+27y=63\text{.}\) 2p Bereken de coördinaten van de snijpunten met de \(x\text{-}\)as en de \(y\text{-}\)as. |
○ Voor het snijpunt met de \(x\text{-}\)as geldt \(y=0\text{,}\) 1p ○ Voor het snijpunt met de \(y\text{-}\)as geldt \(x=0\text{,}\) 1p |
||||||
|
Tekenen
00nm - De vergelijking van een lijn - basis - midden - 0ms
|
Getal & Ruimte (13e editie) - 3 havo - 1.6 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 Getal & Ruimte (13e editie) - vwo wiskunde B - 4.1 Getal & Ruimte (13e editie) - vwo wiskunde A - 3.2 | ||||||
|
Gegeven is de lijn \(l{:}\,-7x-10y=35\text{.}\) 3p Teken de grafiek van \(l\text{.}\) |
○
1p ○ 2p |
||||||
|
OnderlingeLigging
00bl - De vergelijking van een lijn - basis - eind - 1ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 7.1 Getal & Ruimte (12e editie) - vwo wiskunde B - 7.1 Getal & Ruimte (13e editie) - havo wiskunde B - 7.1 Getal & Ruimte (13e editie) - vwo wiskunde B - 7.1 | ||||||
|
Gegeven zijn de lijnen \(k{:}\,3x-y=-2\) en \(l{:}\,6x-2y=-4\text{.}\) 1p Onderzoek of de lijnen samenvallen, evenwijdig zijn of snijden. |
○ \(\frac{3}{6}=\frac{1}{2}=\frac{2}{4}\text{,}\) dus de lijnen \(k\) en \(l\) vallen samen. 1p |
||||||