Centrummaten

1p - 6 oefeningen

Geschiktheid (1)
00m9 - Centrummaten - basis - 9ms
Getal & Ruimte (12e editie) - havo wiskunde A - 2.3 Getal & Ruimte (13e editie) - havo wiskunde A - 2.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 2.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 2.3

Welke centrummaten zijn het meest geschikt om de volgende waarnemingen te karakteriseren? Licht je antwoord toe.

1p

huiswerkgedrag van leerling: regelmatig, altijd, altijd, vaak, vaak, vaak, regelmatig en altijd.

De modus is het meest geschikt. Bij kwalitatieve variabelen kan geen mediaan of gemiddelde worden bepaald.

1p

Geschiktheid (2)
00ma - Centrummaten - basis - 6ms
Getal & Ruimte (12e editie) - havo wiskunde A - 2.3 Getal & Ruimte (13e editie) - havo wiskunde A - 2.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 2.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 2.3

Welke centrummaten zijn het meest geschikt om de volgende waarnemingen te karakteriseren? Licht je antwoord toe.

1p

lichaamslengte van volleybalster in cm: \(185\text{,}\) \(185\text{,}\) \(185\text{,}\) \(186\text{,}\) \(185\text{,}\) \(184\) en \(200\) centimeter.

De modus en de mediaan zijn het meest geschikt. Het gemiddelde is gevoelig voor de uitschieter in de waarnemingen en daardoor niet geschikt.

1p

Geschiktheid (3)
00mb - Centrummaten - basis - 2ms
Getal & Ruimte (12e editie) - havo wiskunde A - 2.3 Getal & Ruimte (13e editie) - havo wiskunde A - 2.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 2.3 Getal & Ruimte (13e editie) - vwo wiskunde A - 2.3

Welke centrummaten zijn het meest geschikt om de volgende waarnemingen te karakteriseren? Licht je antwoord toe.

1p

lichaamslengte van docent in cm: \(180\text{,}\) \(181\text{,}\) \(178\text{,}\) \(181\text{,}\) \(181\text{,}\) \(180\) en \(181\) centimeter.

De mediaan en het gemiddelde zijn het meest geschikt. De modus is \(181\) cm, die is niet geschikt, omdat dat tevens de grootste lichaamslengte is die voorkomt.

1p

Gemiddelde
00l7 - Centrummaten - basis - 0ms
Getal & Ruimte (13e editie) - 2 havo/vwo - 4.5 Getal & Ruimte (13e editie) - 2 vwo - 4.5 Moderne Wiskunde (13e editie) - 2 vmbo k(gt) - 12.4

In een callcenter wordt bijgehouden hoeveel minuten er telkens tussen twee opeenvolgende telefoongesprekken zit. Zie onderstaande waarnemingen.
\(6\)\(0\)\(8\)\(19\)\(4\)\(14\)\(13\)\(0\)\(4\)

3p

Bereken het gemiddelde. Rond af op één decimaal.

De som van de waarnemingsgetallen is
\(6+0+8+19+4+14+13+0+4=68\text{.}\)

1p

Het aantal waarnemingsgetallen is \(9\text{.}\)

1p

Het gemiddelde is \({68 \over 9}≈7{,}6\) minuten.

1p

Mediaan
00la - Centrummaten - basis - 0ms
Getal & Ruimte (13e editie) - 2 havo/vwo - 4.5 Getal & Ruimte (13e editie) - 2 vwo - 4.5

De Nederlandse politie organiseert meerdere keren per week controleacties van fatbikes. Bij iedere actie wordt geteld hoeveel fatbikes zijn opgevoerd. Zie onderstaande waarnemingen.
\(19\)\(14\)\(13\)\(13\)\(16\)\(16\)\(14\)\(12\)\(13\)\(13\)

3p

Bereken de mediaan.

Er zijn \(10\) waarnemingsgetallen, voor de mediaan kijken we dus naar de \(5\)e en \(6\)e waarneming.

1p

Zet de waarnemingsgetallen op volgorde:
\(12\) \(13\) \(13\) \(13\) \(\text{¦}\) \(13\) \(14\) \(\text{¦}\) \(14\) \(16\) \(16\) \(19\)

1p

De mediaan is \({13+14 \over 2}=13{,}5\text{.}\)

1p

Modus
00lb - Centrummaten - basis - 1ms
Getal & Ruimte (13e editie) - 2 havo/vwo - 4.5 Getal & Ruimte (13e editie) - 2 vwo - 4.5 Moderne Wiskunde (13e editie) - 2 vmbo k(gt) - 12.4

Chihuahuapups verlaten na 2 maanden het nest. Op dat moment weegt de fokker elke pup. Zie onderstaande waarnemingen.
\(0{,}97\)\(1{,}10\)\(1{,}11\)\(0{,}77\)\(0{,}85\)\(1{,}06\)\(0{,}88\)\(1{,}04\)\(1{,}00\)\(1{,}06\)

1p

Bepaal de modus.

De modus is \(1{,}06\) kg, want die waarde komt het vaakst voor.

1p

00l7 00m9 00ma 00mb 00la 00lb