Bijzondere rechthoekige driehoeken
16 - 6 oefeningen
|
Bijzondere306090DriehoekAB
007z - Bijzondere rechthoekige driehoeken - basis - 1ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=28\text{,}\) \(\angle P=30\degree\) en \(\angle Q=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geldt \({Q\kern{-.8pt}R \over 1}={P\kern{-.8pt}Q \over \sqrt{3}}={P\kern{-.8pt}R \over 2}\text{.}\) 1p ○ Dit geeft \(P\kern{-.8pt}Q={P\kern{-.8pt}R⋅\sqrt{3} \over 2}={28⋅\sqrt{3} \over 2}\text{.}\) 1p ○ \(P\kern{-.8pt}Q=14\sqrt{3}\text{.}\) 1p |
|
Bijzondere306090DriehoekAC
0082 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=11\text{,}\) \(\angle C=30\degree\) en \(\angle A=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geldt \({A\kern{-.8pt}B \over 1}={A\kern{-.8pt}C \over \sqrt{3}}={B\kern{-.8pt}C \over 2}\text{.}\) 1p ○ Dit geeft \(B\kern{-.8pt}C={A\kern{-.8pt}C⋅2 \over \sqrt{3}}={11⋅2 \over \sqrt{3}}\text{.}\) 1p ○ \(B\kern{-.8pt}C={22 \over \sqrt{3}}=7\frac{1}{3}\sqrt{3}\text{.}\) 1p |
|
Bijzondere454590DriehoekAB
0081 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=29\text{,}\) \(\angle Q=45\degree\) en \(\angle R=90\degree\text{.}\) |
○ In de bijzondere 45-45-90 driehoek \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geldt \({Q\kern{-.8pt}R \over 1}={P\kern{-.8pt}R \over 1}={P\kern{-.8pt}Q \over \sqrt{2}}\text{.}\) 1p ○ Dit geeft \(Q\kern{-.8pt}R={P\kern{-.8pt}Q⋅1 \over \sqrt{2}}={29⋅1 \over \sqrt{2}}\text{.}\) 1p ○ \(Q\kern{-.8pt}R={29 \over \sqrt{2}}=14\frac{1}{2}\sqrt{2}\text{.}\) 1p |
|
Bijzondere454590DriehoekAC
0084 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=20\text{,}\) \(\angle C=45\degree\) en \(\angle A=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geldt \({A\kern{-.8pt}C \over 1}={A\kern{-.8pt}B \over 1}={B\kern{-.8pt}C \over \sqrt{2}}\text{.}\) 1p ○ Dit geeft \(B\kern{-.8pt}C={A\kern{-.8pt}C⋅\sqrt{2} \over 1}={20⋅\sqrt{2} \over 1}\text{.}\) 1p ○ \(B\kern{-.8pt}C=20\sqrt{2}\text{.}\) 1p |
|
Bijzondere603090DriehoekAB
0080 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=28\text{,}\) \(\angle R=60\degree\) en \(\angle P=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geldt \({P\kern{-.8pt}R \over 1}={P\kern{-.8pt}Q \over \sqrt{3}}={Q\kern{-.8pt}R \over 2}\text{.}\) 1p ○ Dit geeft \(P\kern{-.8pt}R={Q\kern{-.8pt}R⋅1 \over 2}={28⋅1 \over 2}\text{.}\) 1p ○ \(P\kern{-.8pt}R=14\text{.}\) 1p |
|
Bijzondere603090DriehoekAC
0083 - Bijzondere rechthoekige driehoeken - basis - 0ms
|
Getal & Ruimte (12e editie) - havo wiskunde B - 3.3 Getal & Ruimte (12e editie) - vwo wiskunde B - 3.4 Getal & Ruimte (13e editie) - vwo wiskunde B - 3.3 |
|
3p Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=21\text{,}\) \(\angle B=60\degree\) en \(\angle C=90\degree\text{.}\) |
○ In de bijzondere 30-60-90 driehoek \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geldt \({B\kern{-.8pt}C \over 1}={A\kern{-.8pt}C \over \sqrt{3}}={A\kern{-.8pt}B \over 2}\text{.}\) 1p ○ Dit geeft \(A\kern{-.8pt}B={B\kern{-.8pt}C⋅2 \over 1}={21⋅2 \over 1}\text{.}\) 1p ○ \(A\kern{-.8pt}B=42\text{.}\) 1p |