Getal & Ruimte (13e editie) - vwo wiskunde B
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{45}+\sqrt{125}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis - 0ms a \(\sqrt{45}+\sqrt{125}=\sqrt{9}⋅\sqrt{5}+\sqrt{25}⋅\sqrt{5}=3\sqrt{5}+5\sqrt{5}\text{.}\) 1p ○ \(3\sqrt{5}+5\sqrt{5}=8\sqrt{5}\text{.}\) 1p 1p b \(\sqrt{18}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{18}=\sqrt{9}⋅\sqrt{2}=3\sqrt{2}\text{.}\) 1p 1p c \(4\sqrt{175}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis - 0ms c \(4\sqrt{175}=4⋅\sqrt{25}⋅\sqrt{7}=4⋅5⋅\sqrt{7}=20\sqrt{7}\text{.}\) 1p 2p d \(4\sqrt{50}+2\sqrt{200}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis - 0ms d \(4\sqrt{50}+2\sqrt{200}=4⋅\sqrt{25}⋅\sqrt{2}+2⋅\sqrt{100}⋅\sqrt{2}\text{.}\) 1p ○ \(4⋅5⋅\sqrt{2}+2⋅10⋅\sqrt{2}=20\sqrt{2}+20\sqrt{2}=40\sqrt{2}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{1\frac{15}{49}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis - 56ms ○ \(\sqrt{1\frac{15}{49}}=\sqrt{\frac{64}{49}}={\sqrt{64} \over \sqrt{49}}=\frac{8}{7}=1\frac{1}{7}\text{.}\) 1p |
|
| 3 vwo | 5.5 Wortels herleiden |
opgave 1Herleid. 1p a \({4 \over 9\sqrt{3}}\) WortelInNoemer 0089 - Wortels vereenvoudigen - basis - 1ms a \({4 \over 9\sqrt{3}}={4 \over 9\sqrt{3}}⋅{\sqrt{3} \over \sqrt{3}}={4\sqrt{3} \over 9⋅3}=\frac{4}{27}\sqrt{3}\text{.}\) 1p 1p b \(\sqrt{\frac{56}{81}}\) BreukInWortel (2) 008c - Wortels vereenvoudigen - basis - 1ms b \(\sqrt{\frac{56}{81}}={\sqrt{56} \over \sqrt{81}}={\sqrt{56} \over 9}=\frac{1}{9}\sqrt{56}=\frac{1}{9}⋅2⋅\sqrt{14}=\frac{2}{9}\sqrt{14}\text{.}\) 1p 1p c \(\sqrt{\frac{16}{45}}\) BreukInWortel (3) 008d - Wortels vereenvoudigen - basis - 1ms c \(\sqrt{\frac{16}{45}}={\sqrt{16} \over \sqrt{45}}={4 \over \sqrt{45}}⋅{\sqrt{45} \over \sqrt{45}}={4\sqrt{45} \over 45}=\frac{4}{45}\sqrt{45}=\frac{4}{45}⋅3⋅\sqrt{5}=\frac{4}{15}\sqrt{5}\text{.}\) 1p 1p d \(\sqrt{1\frac{2}{3}}\) BreukInWortel (4) 008e - Wortels vereenvoudigen - basis - 1ms d \(\sqrt{1\frac{2}{3}}=\sqrt{\frac{5}{3}}={\sqrt{5} \over \sqrt{3}}⋅{\sqrt{3} \over \sqrt{3}}={\sqrt{15} \over 3}=\frac{1}{3}\sqrt{15}\text{.}\) 1p opgave 2Herleid. 1p a \({45\sqrt{72} \over 5\sqrt{3}}\) Delen (4) 00dc - Wortels vereenvoudigen - basis - 9ms a \({45\sqrt{72} \over 5\sqrt{3}}={45 \over 5}⋅{\sqrt{72} \over \sqrt{3}}=9\sqrt{24}=9⋅\sqrt{4}⋅\sqrt{6}=9⋅2⋅\sqrt{6}=18\sqrt{6}\) 1p 1p b \(2\sqrt{2}⋅3\sqrt{14}\) Vermenigvuldigen (5) 00dd - Wortels vereenvoudigen - basis - 3ms - data pool: #22 (3ms) b \(2\sqrt{2}⋅3\sqrt{14}=6\sqrt{28}=6⋅\sqrt{4}⋅\sqrt{7}=6⋅2⋅\sqrt{7}=12\sqrt{7}\) 1p |
|
| vwo wiskunde B | 3.3 Vergelijkingen in de meetkunde |
opgave 1Herleid. 1p a \({3 \over 5+\sqrt{2}}\) SomInNoemer (1) 00r3 - Wortels vereenvoudigen - basis - 1ms a \({3 \over 5+\sqrt{2}}={3 \over 5+\sqrt{2}}⋅{5-\sqrt{2} \over 5-\sqrt{2}}\) 1p 1p b \({4\sqrt{2} \over \sqrt{5}-\sqrt{6}}\) SomInNoemer (2) 00r4 - Wortels vereenvoudigen - basis - 1ms b \({4\sqrt{2} \over \sqrt{5}-\sqrt{6}}={4\sqrt{2} \over \sqrt{5}-\sqrt{6}}⋅{\sqrt{5}+\sqrt{6} \over \sqrt{5}+\sqrt{6}}\) 1p |