Getal & Ruimte (13e editie) - vwo wiskunde B
'Toepassingen van de afgeleide functie'.
| vwo wiskunde B | 2.5 Afgeleide, raaklijn en snelheid |
opgave 1Gegeven is de functie \(f(x)=-x^3+3x^2+2x\text{.}\) Op de grafiek van \(f\) ligt het punt \(A\) met \(x_A=2\text{.}\) 4p Stel algebraïsch de formule op van de raaklijn \(l\) in \(A\text{.}\) OpstellenFormuleRaaklijn 00a3 - Toepassingen van de afgeleide functie - basis - 111ms ○ \(f(2)=8\text{,}\) dus \(A(2, 8)\text{.}\) 1p ○ \(f(x)=-x^3+3x^2+2x\) geeft \(f'(x)=-3x^2+6x+2\text{.}\) 1p ○ Stel \(l{:}\,y=ax+b\) met \(a=f'(2)=2\text{.}\) 1p ○ \(\begin{rcases}y=2x+b \\ \text{door }A(2, 8)\end{rcases}\begin{matrix}2⋅2+b=8 \\ 4+b=8 \\ b=4\end{matrix}\) 1p opgave 2Gegeven is de functie \(f(x)=\frac{1}{3}x^3-x^2-3x+1\frac{1}{2}\text{.}\) In de punten \(A\) en \(B\) van de grafiek van \(f\) is de richtingscoëfficiënt van de raaklijn gelijk aan \(5\text{.}\) 4p Bereken algebraïsch de coördinaten van \(A\) en \(B\text{.}\) RaaklijnMetGegevenRichtingscoefficient 00a4 - Toepassingen van de afgeleide functie - basis - 1ms ○ \(f(x)=\frac{1}{3}x^3-x^2-3x+1\frac{1}{2}\) geeft \(f'(x)=x^2-2x-3\text{.}\) 1p ○ \(f'(x)=5\) geeft 1p ○ \(f(-2)=\frac{5}{6}\text{,}\) dus \(A(-2, \frac{5}{6})\text{.}\) 1p ○ \(f(4)=-5\frac{1}{6}\text{,}\) dus \(B(4, -5\frac{1}{6})\text{.}\) 1p |