Getal & Ruimte (13e editie) - vwo wiskunde B
'Stelling van Pythagoras'.
| 2 vwo | 6.2 Schuine zijden berekenen |
opgave 1Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=46\text{,}\) \(A\kern{-.8pt}C=19\) en \(\angle \text{C}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(A\kern{-.8pt}B\text{.}\) Pythagoras (1) 007c - Stelling van Pythagoras - basis - 1ms ○ Pythagoras in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(B\kern{-.8pt}C^2+A\kern{-.8pt}C^2=A\kern{-.8pt}B^2\text{.}\) 1p ○ \(A\kern{-.8pt}B^2=46^2+19^2=2\,477\text{.}\) 1p ○ \(A\kern{-.8pt}B=\sqrt{2\,477}≈49{,}8\text{.}\) 1p |
|
| 2 vwo | 6.3 Rechthoekszijden berekenen |
opgave 1Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=54\text{,}\) \(A\kern{-.8pt}B=67\) en \(\angle \text{C}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(A\kern{-.8pt}C\text{.}\) Pythagoras (2) 007d - Stelling van Pythagoras - basis - 0ms ○ Pythagoras in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(B\kern{-.8pt}C^2+A\kern{-.8pt}C^2=A\kern{-.8pt}B^2\) ofwel \(54^2+A\kern{-.8pt}C^2=67^2\text{.}\) 1p ○ \(A\kern{-.8pt}C^2=67^2-54^2=1\,573\text{.}\) 1p ○ \(A\kern{-.8pt}C=\sqrt{1\,573}≈39{,}7\text{.}\) 1p |