Getal & Ruimte (13e editie) - vwo wiskunde B
'Sinus- en cosinusregel'.
| vwo wiskunde B | 3.4 De sinusregel en de cosinusregel |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=21\text{,}\) \(\angle R=51\degree\) en \(\angle P=66\degree\text{.}\) SinusregelZijdeInScherp 007p - Sinus- en cosinusregel - basis - 0ms a De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R={P\kern{-.8pt}Q⋅\sin(\angle P) \over \sin(\angle R)}={21⋅\sin(66\degree) \over \sin(51\degree)}\text{.}\) 1p ○ \(Q\kern{-.8pt}R≈24{,}7\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=21\text{,}\) \(\angle C=63\degree\) en \(\angle A=92\degree\text{.}\) SinusregelZijdeInStomp 007q - Sinus- en cosinusregel - basis - 0ms b De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C={A\kern{-.8pt}B⋅\sin(\angle A) \over \sin(\angle C)}={21⋅\sin(92\degree) \over \sin(63\degree)}\text{.}\) 1p ○ \(B\kern{-.8pt}C≈23{,}6\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=13\text{,}\) \(A\kern{-.8pt}C=20\) en \(\angle A=34\degree\text{.}\) SinusregelHoekInScherp 007r - Sinus- en cosinusregel - basis - 8ms c De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}={A\kern{-.8pt}B \over \sin(\angle C)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle B)={A\kern{-.8pt}C⋅\sin(\angle A) \over B\kern{-.8pt}C}={20⋅\sin(34\degree) \over 13}=0{,}860...\text{.}\) 1p ○ Dit geeft \(\angle B≈59{,}3\degree\) of \(\angle B≈120{,}7\degree\text{.}\) 1p 3p d Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=15\text{,}\) \(P\kern{-.8pt}R=26\) en \(\angle P=32\degree\text{.}\) SinusregelHoekInStomp 007s - Sinus- en cosinusregel - basis - 0ms d De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle Q)={P\kern{-.8pt}R⋅\sin(\angle P) \over Q\kern{-.8pt}R}={26⋅\sin(32\degree) \over 15}=0{,}918...\text{.}\) 1p ○ Dit geeft \(\angle Q≈66{,}7\degree\) of \(\angle Q≈113{,}3\degree\text{.}\) 1p opgave 24p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=42\text{,}\) \(\angle B=39\degree\) en \(\angle A=58\degree\text{.}\) SinusregelZijdeNaHoekInScherp 007t - Sinus- en cosinusregel - basis - 0ms a Uit \(\angle B+\angle C+\angle A=180\degree\) volgt \(\angle C=180\degree-\angle B-\angle A=180\degree-39\degree-58\degree=83\degree\text{.}\) 1p ○ De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}C \over \sin(\angle B)}={A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C={A\kern{-.8pt}B⋅\sin(\angle B) \over \sin(\angle C)}={42⋅\sin(39\degree) \over \sin(83\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}C≈26{,}6\text{.}\) 1p 4p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=43\text{,}\) \(\angle Q=27\degree\) en \(\angle P=28\degree\text{.}\) SinusregelZijdeNaHoekInStomp 007u - Sinus- en cosinusregel - basis - 0ms b Uit \(\angle Q+\angle R+\angle P=180\degree\) volgt \(\angle R=180\degree-\angle Q-\angle P=180\degree-27\degree-28\degree=125\degree\text{.}\) 1p ○ De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R={P\kern{-.8pt}Q⋅\sin(\angle Q) \over \sin(\angle R)}={43⋅\sin(27\degree) \over \sin(125\degree)}\text{.}\) 1p ○ \(P\kern{-.8pt}R≈23{,}8\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=28\text{,}\) \(B\kern{-.8pt}C=28\) en \(\angle B=78\degree\text{.}\) CosinusregelZijdeInScherp 007v - Sinus- en cosinusregel - basis - 1ms c De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(A\kern{-.8pt}C^2=A\kern{-.8pt}B^2+B\kern{-.8pt}C^2-2⋅A\kern{-.8pt}B⋅B\kern{-.8pt}C⋅\cos(\angle B)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C^2=28^2+28^2-2⋅28⋅28⋅\cos(78\degree)=1241{,}994...\text{.}\) 1p ○ \(A\kern{-.8pt}C=\sqrt{1241{,}994...}≈35{,}2\text{.}\) 1p 3p d Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=10\text{,}\) \(A\kern{-.8pt}B=10\) en \(\angle A=104\degree\text{.}\) CosinusregelZijdeInStomp 007w - Sinus- en cosinusregel - basis - 0ms d De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(B\kern{-.8pt}C^2=A\kern{-.8pt}C^2+A\kern{-.8pt}B^2-2⋅A\kern{-.8pt}C⋅A\kern{-.8pt}B⋅\cos(\angle A)\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C^2=10^2+10^2-2⋅10⋅10⋅\cos(104\degree)=248{,}384...\text{.}\) 1p ○ \(B\kern{-.8pt}C=\sqrt{248{,}384...}≈15{,}8\text{.}\) 1p opgave 34p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=15\text{,}\) \(K\kern{-.8pt}L=11\) en \(L\kern{-.8pt}M=17\text{.}\) CosinusregelHoekInScherp 007x - Sinus- en cosinusregel - basis - 5ms a De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2=K\kern{-.8pt}M^2+K\kern{-.8pt}L^2-2⋅K\kern{-.8pt}M⋅K\kern{-.8pt}L⋅\cos(\angle K)\text{.}\) 1p ○ Invullen geeft \(17^2=15^2+11^2-2⋅15⋅11⋅\cos(\angle K)\) 1p ○ Balansmethode geeft \(\cos(\angle K)={289-346 \over -330}=0{,}172...\) 1p ○ Hieruit volgt \(\angle K=\cos^{-1}(0{,}172...)≈80{,}1\degree\text{.}\) 1p 4p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=22\text{,}\) \(K\kern{-.8pt}M=26\) en \(K\kern{-.8pt}L=36\text{.}\) CosinusregelHoekInStomp 007y - Sinus- en cosinusregel - basis - 0ms b De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}L^2=L\kern{-.8pt}M^2+K\kern{-.8pt}M^2-2⋅L\kern{-.8pt}M⋅K\kern{-.8pt}M⋅\cos(\angle M)\text{.}\) 1p ○ Invullen geeft \(36^2=22^2+26^2-2⋅22⋅26⋅\cos(\angle M)\) 1p ○ Balansmethode geeft \(\cos(\angle M)={1\,296-1\,160 \over -1\,144}=-0{,}118...\) 1p ○ Hieruit volgt \(\angle M=\cos^{-1}(-0{,}118...)≈96{,}8\degree\text{.}\) 1p |