Getal & Ruimte (13e editie) - vwo wiskunde B
'Sinus, cosinus en tangens'.
| 3 vwo | 6.3 Berekeningen met de tangens |
opgave 13p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=23\text{,}\) \(\angle B=39\degree\) en \(\angle C=90\degree\text{.}\) Tangens (1) 007m - Sinus, cosinus en tangens - basis - 0ms a Tangens in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\tan(\angle B)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\tan(39\degree)={A\kern{-.8pt}C \over 23}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}C=23⋅\tan(39\degree)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C≈18{,}6\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=30\text{,}\) \(\angle B=38\degree\) en \(\angle C=90\degree\text{.}\) Tangens (2) 007n - Sinus, cosinus en tangens - basis - 0ms b Tangens in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\tan(\angle B)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\tan(38\degree)={30 \over B\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(B\kern{-.8pt}C={30 \over \tan(38\degree)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C≈38{,}4\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=50\text{,}\) \(K\kern{-.8pt}M=26\) en \(\angle M=90\degree\text{.}\) Tangens (3) 007o - Sinus, cosinus en tangens - basis - 0ms c Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle L)={K\kern{-.8pt}M \over L\kern{-.8pt}M}\) ofwel \(\tan(\angle L)={26 \over 50}\text{.}\) 1p ○ Hieruit volgt \(\angle L=\tan^{-1}({26 \over 50})\text{.}\) 1p ○ Dus \(\angle L≈27{,}5\degree\text{.}\) 1p |
|
| 3 vwo | 6.4 De sinus en de cosinus |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=77\text{,}\) \(\angle Q=55\degree\) en \(\angle R=90\degree\text{.}\) Sinus (1) 007g - Sinus, cosinus en tangens - basis - 0ms a Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle Q)={P\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\sin(55\degree)={P\kern{-.8pt}R \over 77}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}R=77⋅\sin(55\degree)\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R≈63{,}1\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=56\text{,}\) \(\angle M=55\degree\) en \(\angle K=90\degree\text{.}\) Sinus (2) 007h - Sinus, cosinus en tangens - basis - 0ms b Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle M)={K\kern{-.8pt}L \over L\kern{-.8pt}M}\) ofwel \(\sin(55\degree)={56 \over L\kern{-.8pt}M}\text{.}\) 1p ○ Hieruit volgt \(L\kern{-.8pt}M={56 \over \sin(55\degree)}\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M≈68{,}4\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=37\text{,}\) \(A\kern{-.8pt}B=64\) en \(\angle C=90\degree\text{.}\) Sinus (3) 007i - Sinus, cosinus en tangens - basis - 0ms c Sinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\sin(\angle B)={A\kern{-.8pt}C \over A\kern{-.8pt}B}\) ofwel \(\sin(\angle B)={37 \over 64}\text{.}\) 1p ○ Hieruit volgt \(\angle B=\sin^{-1}({37 \over 64})\text{.}\) 1p ○ Dus \(\angle B≈35{,}3\degree\text{.}\) 1p 3p d Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=77\text{,}\) \(\angle C=38\degree\) en \(\angle A=90\degree\text{.}\) Cosinus (1) 007j - Sinus, cosinus en tangens - basis - 0ms d Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle C)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\cos(38\degree)={A\kern{-.8pt}C \over 77}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}C=77⋅\cos(38\degree)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C≈60{,}7\text{.}\) 1p opgave 23p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=43\text{,}\) \(\angle C=58\degree\) en \(\angle A=90\degree\text{.}\) Cosinus (2) 007k - Sinus, cosinus en tangens - basis - 0ms a Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle C)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\cos(58\degree)={43 \over B\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(B\kern{-.8pt}C={43 \over \cos(58\degree)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C≈81{,}1\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=51\text{,}\) \(L\kern{-.8pt}M=55\) en \(\angle K=90\degree\text{.}\) Cosinus (3) 007l - Sinus, cosinus en tangens - basis - 0ms b Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle M)={K\kern{-.8pt}M \over L\kern{-.8pt}M}\) ofwel \(\cos(\angle M)={51 \over 55}\text{.}\) 1p ○ Hieruit volgt \(\angle M=\cos^{-1}({51 \over 55})\text{.}\) 1p ○ Dus \(\angle M≈22{,}0\degree\text{.}\) 1p |