Getal & Ruimte (13e editie) - vwo wiskunde B
'Kenmerkende eigenschappen van functies'.
| 3 vwo | 3.2 Kwadratische functies |
opgave 13p Bereken de coördinaten van de top van de grafiek van \(f(x)=x^2+2x-2\) en maak een schets van de grafiek. Parabool (1) 00eu - Kenmerkende eigenschappen van functies - basis - 1ms ○ \(x_{\text{top}}={-\kern{-.8pt}b \over 2a}={-2 \over 2⋅1}=-1\) 1p ○ \(y_{\text{top}}=f(-1)=1⋅(-1)^2+2⋅-1-2=-3\) 1p ○ \(a=1\text{,}\) dus \(a>0\text{,}\) dus de grafiek is een dalparabool. 1p |
|
| 3 vwo | 3.3 De functie a(x-d)(x-e) |
opgave 13p Bereken de coördinaten van de top van de grafiek van \(f(x)=\frac{5}{16}(x-3)(x+5)\) en maak een schets van de grafiek. Parabool (2) 00ev - Kenmerkende eigenschappen van functies - basis - 1ms ○ \(x_{\text{top}}={d+e \over 2}={3+-5 \over 2}=-1\) 1p ○ \(y_{\text{top}}=f(-1)=\frac{5}{16}⋅(-1-3)⋅(-1+5)=-5\) 1p ○ \(a=\frac{5}{16}\text{,}\) dus \(a>0\text{,}\) dus de grafiek is een dalparabool. 1p |
|
| 3 vwo | 3.4 De functie f(x)=a(x-p)²+q |
opgave 12p Bereken de coördinaten van de top van de grafiek van \(f(x)=4(x+2)^2+5\) en maak een schets van de grafiek. Parabool (3) 00ew - Kenmerkende eigenschappen van functies - basis - 1ms ○ De coördinaten van de top van de grafiek van \(f\) zijn \((-2, 5)\text{.}\) 1p ○ \(a=4\text{,}\) dus \(a>0\text{,}\) dus de grafiek is een dalparabool. 1p |