Getal & Ruimte (13e editie) - vwo wiskunde B

'Goniometrische vergelijkingen'.

vwo wiskunde B 8.3 Goniometrische vergelijkingen

Goniometrische vergelijkingen (7)

opgave 1

Bereken zo mogelijk exact de oplossingen in \([0, 2\pi ]\text{.}\)

3p

a

\(\cos(4x)=0\)

ExacteWaarde (0)
004f - Goniometrische vergelijkingen - basis - 52ms - dynamic variables

a

De exacte waardencirkel geeft
\(4x=\frac{1}{2}\pi +k⋅\pi \)

1p

\(4x=\frac{1}{2}\pi +k⋅\pi \)
\(x=\frac{1}{8}\pi +k⋅\frac{1}{4}\pi \)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=\frac{1}{8}\pi ∨x=\frac{3}{8}\pi ∨x=\frac{5}{8}\pi ∨x=\frac{7}{8}\pi ∨x=1\frac{1}{8}\pi ∨x=1\frac{3}{8}\pi ∨x=1\frac{5}{8}\pi ∨x=1\frac{7}{8}\pi \)

1p

4p

b

\(4\cos(\frac{1}{2}x+\frac{1}{3}\pi )=-2\)

ExacteWaarde (1)
004g - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

b

Balansmethode geeft \(\cos(\frac{1}{2}x+\frac{1}{3}\pi )=-\frac{1}{2}\text{.}\)

1p

De exacte waardencirkel geeft
\(\frac{1}{2}x+\frac{1}{3}\pi =\frac{2}{3}\pi +k⋅2\pi ∨\frac{1}{2}x+\frac{1}{3}\pi =-\frac{2}{3}\pi +k⋅2\pi \)

1p

\(\frac{1}{2}x=\frac{1}{3}\pi +k⋅2\pi ∨\frac{1}{2}x=-\pi +k⋅2\pi \)
\(x=\frac{2}{3}\pi +k⋅4\pi ∨x=-2\pi +k⋅4\pi \)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=\frac{2}{3}\pi ∨x=2\pi \)

1p

4p

c

\(3\sin(\frac{3}{4}t)=1\frac{1}{2}\sqrt{2}\)

ExacteWaarde (2)
004h - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

c

Balansmethode geeft \(\sin(\frac{3}{4}t)=\frac{1}{2}\sqrt{2}\text{.}\)

1p

De exacte waardencirkel geeft
\(\frac{3}{4}t=\frac{1}{4}\pi +k⋅2\pi ∨\frac{3}{4}t=\frac{3}{4}\pi +k⋅2\pi \)

1p

\(\frac{3}{4}t=\frac{1}{4}\pi +k⋅2\pi ∨\frac{3}{4}t=\frac{3}{4}\pi +k⋅2\pi \)
\(t=\frac{1}{3}\pi +k⋅2\frac{2}{3}\pi ∨t=\pi +k⋅2\frac{2}{3}\pi \)

1p

\(t\) in \([0, 2\pi ]\) geeft \(t=\frac{1}{3}\pi ∨t=\pi \)

1p

4p

d

\(-5\cos(4x-\frac{1}{6}\pi )=2\frac{1}{2}\sqrt{3}\)

ExacteWaarde (3)
006x - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

d

Balansmethode geeft \(\cos(4x-\frac{1}{6}\pi )=-\frac{1}{2}\sqrt{3}\text{.}\)

1p

De exacte waardencirkel geeft
\(4x-\frac{1}{6}\pi =\frac{5}{6}\pi +k⋅2\pi ∨4x-\frac{1}{6}\pi =-\frac{5}{6}\pi +k⋅2\pi \)

1p

\(4x=\pi +k⋅2\pi ∨4x=-\frac{2}{3}\pi +k⋅2\pi \)
\(x=\frac{1}{4}\pi +k⋅\frac{1}{2}\pi ∨x=-\frac{1}{6}\pi +k⋅\frac{1}{2}\pi \)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=\frac{1}{4}\pi ∨x=\frac{3}{4}\pi ∨x=1\frac{1}{4}\pi ∨x=1\frac{3}{4}\pi ∨x=\frac{1}{3}\pi ∨x=\frac{5}{6}\pi ∨x=1\frac{1}{3}\pi ∨x=1\frac{5}{6}\pi \)

1p

opgave 2

Bereken zo mogelijk exact de oplossingen in \([0, 2\pi ]\text{.}\)

4p

\(-1-3\cos(4q-\frac{2}{5}\pi )=-4\)

ExacteWaarde (4)
006y - Goniometrische vergelijkingen - basis - 1ms - dynamic variables

Balansmethode geeft \(-3\cos(4q-\frac{2}{5}\pi )=-3\) dus \(\cos(4q-\frac{2}{5}\pi )=1\text{.}\)

1p

De exacte waardencirkel geeft
\(4q-\frac{2}{5}\pi =k⋅2\pi \)

1p

\(4q=\frac{2}{5}\pi +k⋅2\pi \)
\(q=\frac{1}{10}\pi +k⋅\frac{1}{2}\pi \)

1p

\(q\) in \([0, 2\pi ]\) geeft \(q=\frac{1}{10}\pi ∨q=\frac{3}{5}\pi ∨q=1\frac{1}{10}\pi ∨q=1\frac{3}{5}\pi \)

1p

opgave 3

Los exact op.

3p

a

\(\sin^2(3x-\frac{1}{2}\pi )=1\)

Kwadraat
006z - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

a

\(\sin(3x-\frac{1}{2}\pi )=1∨\sin(3x-\frac{1}{2}\pi )=-1\)

1p

De exacte waardencirkel geeft
\(3x-\frac{1}{2}\pi =\frac{1}{2}\pi +k⋅2\pi ∨3x-\frac{1}{2}\pi =1\frac{1}{2}\pi +k⋅2\pi \)

1p

\(3x=\pi +k⋅2\pi ∨3x=2\pi +k⋅2\pi \)
\(x=\frac{1}{3}\pi +k⋅\frac{2}{3}\pi ∨x=\frac{2}{3}\pi +k⋅\frac{2}{3}\pi \)

1p

3p

b

\(\frac{5}{9}\cos(1\frac{1}{2}q+\frac{1}{2}\pi )\cos(\frac{3}{4}q-\frac{4}{5}\pi )=0\)

ProductIsNul
0070 - Goniometrische vergelijkingen - basis - 1ms - dynamic variables

b

\(\cos(1\frac{1}{2}q+\frac{1}{2}\pi )=0∨\cos(\frac{3}{4}q-\frac{4}{5}\pi )=0\)

1p

De exacte waardencirkel geeft
\(1\frac{1}{2}q+\frac{1}{2}\pi =\frac{1}{2}\pi +k⋅\pi ∨\frac{3}{4}q-\frac{4}{5}\pi =\frac{1}{2}\pi +k⋅\pi \)

1p

\(1\frac{1}{2}q=k⋅\pi ∨\frac{3}{4}q=1\frac{3}{10}\pi +k⋅\pi \)
\(q=k⋅\frac{2}{3}\pi ∨q=1\frac{11}{15}\pi +k⋅1\frac{1}{3}\pi \)

1p

"