Getal & Ruimte (13e editie) - vwo wiskunde A

'Stelsels oplossen'.

vwo wiskunde A k.1 Stelsels van lineaire vergelijkingen

Stelsels oplossen (3)

opgave 1

Los exact op.

3p

a

\(\begin{cases}6x-y=-3 \\ 4x-y=3\end{cases}\)

Eliminatie (1)
003f - Stelsels oplossen - basis - 416ms - dynamic variables

a

Aftrekken geeft \(2x=-6\text{,}\) dus \(x=-3\text{.}\)

1p

\(\begin{rcases}6x-y=-3 \\ x=-3\end{rcases}\begin{matrix}6⋅-3-y=-3 \\ -y=15 \\ y=-15\end{matrix}\)

1p

De oplossing is \((x, y)=(-3, -15)\text{.}\)

1p

4p

b

\(\begin{cases}6a+5b=2 \\ 3a+2b=-1\end{cases}\)

Eliminatie (2)
003g - Stelsels oplossen - basis - 8ms - dynamic variables

b

\(\begin{cases}6a+5b=2 \\ 3a+2b=-1\end{cases}\) \(\begin{vmatrix}1 \\ 2\end{vmatrix}\) geeft \(\begin{cases}6a+5b=2 \\ 6a+4b=-2\end{cases}\)

1p

Aftrekken geeft \(b=4\text{.}\)

1p

\(\begin{rcases}6a+5b=2 \\ b=4\end{rcases}\begin{matrix}6a+5⋅4=2 \\ 6a=-18 \\ a=-3\end{matrix}\)

1p

De oplossing is \((a, b)=(-3, 4)\text{.}\)

1p

4p

c

\(\begin{cases}3p-3q=-6 \\ 5p+5q=5\end{cases}\)

Eliminatie (3)
003h - Stelsels oplossen - basis - 10ms - dynamic variables

c

\(\begin{cases}3p-3q=-6 \\ 5p+5q=5\end{cases}\) \(\begin{vmatrix}5 \\ 3\end{vmatrix}\) geeft \(\begin{cases}15p-15q=-30 \\ 15p+15q=15\end{cases}\)

1p

Optellen geeft \(30p=-15\text{,}\) dus \(p=-\frac{1}{2}\text{.}\)

1p

\(\begin{rcases}3p-3q=-6 \\ p=-\frac{1}{2}\end{rcases}\begin{matrix}3⋅-\frac{1}{2}-3q=-6 \\ -3q=-4\frac{1}{2} \\ q=1\frac{1}{2}\end{matrix}\)

1p

De oplossing is \((p, q)=(-\frac{1}{2}, 1\frac{1}{2})\text{.}\)

1p

"