Getal & Ruimte (13e editie) - vwo wiskunde A
'Lineaire formules'.
| 2 vwo | 3.1 Lineaire formules | |||||
opgave 1Geef de richtingscoëfficiënt en het snijpunt met de \(y\text{-}\)as van de volgende lijnen. 2p a \(y=-x-3\) Eigenschappen (1) 00n4 - Lineaire formules - gevorderd - midden - 1ms a Omschrijven naar de standaardvorm \(y=ax+b\) geeft 1p ○ De richtingscoëfficiënt is \(-1\) en het snijpunt met de \(y\text{-}\)as is \((0, -3)\text{.}\) 1p 2p b \(y=3x\) Eigenschappen (2) 00n5 - Lineaire formules - gevorderd - eind - 0ms b Omschrijven naar de standaardvorm \(y=ax+b\) geeft 1p ○ De richtingscoëfficiënt is \(3\) en het snijpunt met de \(y\text{-}\)as is \((0, 0)\text{.}\) 1p 2p c \(y=-2\) Eigenschappen (3) 00n6 - Lineaire formules - gevorderd - eind - 0ms c Omschrijven naar de standaardvorm \(y=ax+b\) geeft 1p ○ De richtingscoëfficiënt is \(0\) en het snijpunt met de \(y\text{-}\)as is \((0, -2)\text{.}\) 1p 2p d \(y=-3+4x\) Eigenschappen (4) 00n7 - Lineaire formules - gevorderd - eind - 0ms d Omschrijven naar de standaardvorm \(y=ax+b\) geeft 1p ○ De richtingscoëfficiënt is \(4\) en het snijpunt met de \(y\text{-}\)as is \((0, -3)\text{.}\) 1p |
||||||
| 3 vwo | 1.2 Lineaire formules | |||||
opgave 1Gegeven is de formule \(y=-2x+7\text{.}\) 1p Bereken de waarde van \(y\) die hoort bij \(x=-3\text{.}\) FormuleBerekenen 00mx - Lineaire formules - basis - basis - 0ms - dynamic variables ○ Het invullen van \(x=-3\) geeft 1p opgave 2Gegeven is de formule \(y=-4x-7\text{.}\) 1p Controleer of het punt \(A(-3, 4)\) op de grafiek van \(y=-4x-7\) ligt. LigtPuntOpLijn 00mz - Lineaire formules - basis - eind - 1ms - dynamic variables ○ Het invullen van \(x=-3\) geeft 1p opgave 3Gegeven is de formule \(y=-1\frac{1}{5}x+5\text{.}\) 3p Teken de bijbehorende grafiek. Tekenen (2) 00n1 - Lineaire formules - basis - eind - 3ms - data pool: #122 (2ms) - dynamic variables ○ Het is een lineaire formule, dus de grafiek is een lijn.
1p ○ 2p |
||||||
| 3 vwo | 1.4 Snijpunten van grafieken | |||||
opgave 1Gegeven is de formule \(y=5x+3\text{.}\) 3p Bereken exact de coördinaat van het snijpunt van de grafiek met de \(x\text{-}\)as. SnijpuntMetXas 00ju - Lineaire formules - basis - midden - 1ms ○ Het snijpunt van de grafiek met de \(x\text{-}\)as volgt uit 1p ○ De balansmethode geeft 1p ○ Het snijpunt van de grafiek met de \(x\text{-}\)as is \((-\frac{3}{5}, 0)\text{.}\) 1p opgave 2Gegeven is de formule \(y=5x+1\text{.}\) 2p Bereken exact de coördinaat van het snijpunt van de grafiek met de \(y\text{-}\)as. SnijpuntMetYas 00jv - Lineaire formules - basis - midden - 0ms ○ Het snijpunt van de grafiek met de \(y\text{-}\)as volgt uit 1p ○ Het snijpunt van de grafiek met de \(y\text{-}\)as is \((0, 1)\text{.}\) 1p opgave 3Gegeven zijn de lijnen \(k{:}\,y=-2x-2\) en \(l{:}\,y=6x+22\text{.}\) 3p Bereken de coördinaten van het snijpunt \(S\) van de lijnen \(k\) en \(l\text{.}\) SnijpuntTweeLijnen 00mw - Lineaire formules - basis - eind - 0ms ○ Gelijkstellen geeft 1p ○ Invullen geeft 1p ○ Dus \(S(-3, 4)\text{.}\) 1p |
||||||
| vwo wiskunde A | 1.1 Lineaire formules | |||||
opgave 1Gegeven is de formule \(N=9t-6\text{.}\) 3p Teken de bijbehorende grafiek. Tekenen (1) 00n0 - Lineaire formules - basis - midden - 0ms - dynamic variables ○ Het is een lineaire formule, dus de grafiek is een lijn.
1p ○ 2p opgave 2Gegeven is de formule \(y=3x+2\text{.}\) 3p Bereken exact de coördinaat van het snijpunt van de grafiek met de lijn \(y=1\text{.}\) SnijpuntMetHorizontaal 00n2 - Lineaire formules - basis - eind - 1ms ○ Het snijpunt volgt uit \(3x+2=1\text{.}\) 1p ○ De balansmethode geeft 1p ○ De coördinaten van het snijpunt zijn \((-\frac{1}{3}, 1)\text{.}\) 1p opgave 3Gegeven is de formule \(y=3x+1\text{.}\) 2p Bereken exact de coördinaat van het snijpunt van de grafiek met de lijn \(x=5\text{.}\) SnijpuntMetVerticaal 00n3 - Lineaire formules - basis - eind - 0ms ○ De \(y\text{-}\)coördinaat van het snijpunt is 1p ○ De coördinaten van het snijpunt zijn \((5, 16)\text{.}\) 1p |