Getal & Ruimte (13e editie) - havo wiskunde A
'Frequentietabellen'.
| 2 havo/vwo | 4.4 Histogram | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
opgave 1Aan de leerlingen van 2v is gevraagd hoeveel huisdieren ze hebben. Het resultaat is: 2p Maak een frequentietabel bij deze gegevens. Opstellen 00lc - Frequentietabellen - basis - basis - 1ms ○
2p opgave 2Een voetballer oefent met het nemen van penalties. Bij iedere training schiet hij 10 keer op doel. Zie de gegevens in de tabel.
2p Maak een histogram bij deze gegevens. Histogram 00ld - Frequentietabellen - basis - eind - 1ms ○ 2p opgave 3Gjalt gooit steeds met vier dobbelstenen en telt bij iedere worp het aantal ogen. Zie de gegevens in de tabel.
1p Van hoeveel worpen werd het aantal ogen genoteerd? TotaleFrequentie 00ls - Frequentietabellen - basis - midden - 0ms ○ In totaal werd van \(3+3+8+4+2+6+3+2+4=35\) worpen het aantal ogen genoteerd. 1p opgave 4Terje gooit steeds met twee dobbelstenen en telt bij iedere worp het aantal ogen. Zie de gegevens in de tabel.
1p Wat is het totale aantal ogen van alle worpen samen? TotaleSom 00lt - Frequentietabellen - basis - midden - 0ms ○ Het totale aantal ogen van alle worpen samen is \(5⋅3+6⋅4+6⋅5+6⋅6+6⋅7+3⋅8+2⋅9+4⋅10+1⋅11=240\text{.}\) 1p opgave 5Terje gooit steeds met twee dobbelstenen en telt bij iedere worp het aantal ogen. Zie de gegevens in de tabel.
3p Bij hoeveel procent van de worpen was het aantal ogen \(9\) of minder? RelatieveFrequentie (2) 00m8 - Frequentietabellen - basis - midden - 3ms ○ De totale frequentie is \(4+5+4+6+9+7+4+4+4=47\text{.}\) 1p ○ Bij \(4+5+4+6+9+7+4=39\) worpen was het aantal ogen \(9\) of minder. 1p ○ Dus bij \({39 \over 47}⋅100\%=83{,}0\%\text{.}\) 1p |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2 havo/vwo | 4.5 Centrummaten | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
opgave 1Een voetballer oefent met het nemen van penalties. Bij iedere training schiet hij 10 keer op doel. Zie de gegevens in de tabel.
3p Bereken het gemiddelde. Rond af op één decimaal. Gemiddelde 00is - Frequentietabellen - basis - eind - 15ms ○ De som van de waarnemingsgetallen is 1p ○ De totale frequentie is 1p ○ Het gemiddelde is \({266 \over 67}≈4{,}0\text{.}\) 1p opgave 2Een voetballer oefent met het nemen van penalties. Bij iedere training schiet hij 10 keer op doel. Zie de gegevens in de tabel.
1p Bepaal de modus. Modus 00lg - Frequentietabellen - basis - midden - 4ms ○ De modus is \(5\text{,}\) want dat is het waarnemingsgetal met de hoogste frequentie. 1p opgave 3Een voetballer oefent met het nemen van penalties. Bij iedere training schiet hij 10 keer op doel. Zie de gegevens in de tabel.
3p Bepaal de mediaan. Mediaan 00lh - Frequentietabellen - basis - eind - 0ms ○ Er zijn \(1+8+17+23+14+3=66\) waarnemingsgetallen, dus voor de mediaan kijken we naar de \(33\)e en \(34\)e waarneming. 1p ○ De eerste \(3\) waarnemingen komen in totaal \(1+8+17=26\) keer voor. 1p ○ De mediaan is \({4+4 \over 2}=4\text{.}\) 1p opgave 4Samira en Isa doen voor hun profielwerkstuk onderzoek naar het aantal keer dat leerlingen in de 4e klas van de middelbare school per week een sportschool bezoeken. Zie de gegevens in de tabel.
3p Bereken de relatieve frequentie van het waarnemingsgetal \(2\text{.}\) RelatieveFrequentie (1) 00m7 - Frequentietabellen - basis - eind - 1ms ○ De totale frequentie is \(15+23+19+5+4+1=67\text{.}\) 1p ○ De absolute frequentie van waarnemingsgetal \(2\) is \(19\text{.}\) 1p ○ De relatieve frequentie van waarnemingsgetal \(2\) is \({19 \over 67}⋅100\%=28{,}4\%\text{.}\) 1p |