Getal & Ruimte (13e editie) - 3 vwo
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{20}+\sqrt{80}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis - 0ms a \(\sqrt{20}+\sqrt{80}=\sqrt{4}⋅\sqrt{5}+\sqrt{16}⋅\sqrt{5}=2\sqrt{5}+4\sqrt{5}\text{.}\) 1p ○ \(2\sqrt{5}+4\sqrt{5}=6\sqrt{5}\text{.}\) 1p 1p b \(\sqrt{300}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{300}=\sqrt{100}⋅\sqrt{3}=10\sqrt{3}\text{.}\) 1p 1p c \(-5\sqrt{125}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis - 0ms c \(-5\sqrt{125}=-5⋅\sqrt{25}⋅\sqrt{5}=-5⋅5⋅\sqrt{5}=-25\sqrt{5}\text{.}\) 1p 2p d \(2\sqrt{12}+4\sqrt{75}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis - 0ms d \(2\sqrt{12}+4\sqrt{75}=2⋅\sqrt{4}⋅\sqrt{3}+4⋅\sqrt{25}⋅\sqrt{3}\text{.}\) 1p ○ \(2⋅2⋅\sqrt{3}+4⋅5⋅\sqrt{3}=4\sqrt{3}+20\sqrt{3}=24\sqrt{3}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{1\frac{32}{49}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis - 56ms ○ \(\sqrt{1\frac{32}{49}}=\sqrt{\frac{81}{49}}={\sqrt{81} \over \sqrt{49}}=\frac{9}{7}=1\frac{2}{7}\text{.}\) 1p |
|
| 3 vwo | 5.5 Wortels herleiden |
opgave 1Herleid. 1p a \({8 \over 7\sqrt{2}}\) WortelInNoemer 0089 - Wortels vereenvoudigen - basis - 1ms a \({8 \over 7\sqrt{2}}={8 \over 7\sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={8\sqrt{2} \over 7⋅2}=\frac{4}{7}\sqrt{2}\text{.}\) 1p 1p b \(\sqrt{20\frac{3}{4}}\) BreukInWortel (2) 008c - Wortels vereenvoudigen - basis - 1ms b \(\sqrt{20\frac{3}{4}}=\sqrt{\frac{83}{4}}={\sqrt{83} \over \sqrt{4}}={\sqrt{83} \over 2}=\frac{1}{2}\sqrt{83}\text{.}\) 1p 1p c \(\sqrt{\frac{16}{63}}\) BreukInWortel (3) 008d - Wortels vereenvoudigen - basis - 1ms c \(\sqrt{\frac{16}{63}}={\sqrt{16} \over \sqrt{63}}={4 \over \sqrt{63}}⋅{\sqrt{63} \over \sqrt{63}}={4\sqrt{63} \over 63}=\frac{4}{63}\sqrt{63}=\frac{4}{63}⋅3⋅\sqrt{7}=\frac{4}{21}\sqrt{7}\text{.}\) 1p 1p d \(\sqrt{37\frac{1}{2}}\) BreukInWortel (4) 008e - Wortels vereenvoudigen - basis - 1ms d \(\sqrt{37\frac{1}{2}}=\sqrt{\frac{75}{2}}={\sqrt{75} \over \sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={\sqrt{150} \over 2}=\frac{1}{2}\sqrt{150}=\frac{1}{2}⋅5⋅\sqrt{6}=2\frac{1}{2}\sqrt{6}\text{.}\) 1p opgave 2Herleid. 1p a \({21\sqrt{120} \over 3\sqrt{10}}\) Delen (4) 00dc - Wortels vereenvoudigen - basis - 9ms a \({21\sqrt{120} \over 3\sqrt{10}}={21 \over 3}⋅{\sqrt{120} \over \sqrt{10}}=7\sqrt{12}=7⋅\sqrt{4}⋅\sqrt{3}=7⋅2⋅\sqrt{3}=14\sqrt{3}\) 1p 1p b \(5\sqrt{10}⋅3\sqrt{2}\) Vermenigvuldigen (5) 00dd - Wortels vereenvoudigen - basis - 3ms - data pool: #22 (3ms) b \(5\sqrt{10}⋅3\sqrt{2}=15\sqrt{20}=15⋅\sqrt{4}⋅\sqrt{5}=15⋅2⋅\sqrt{5}=30\sqrt{5}\) 1p |