Getal & Ruimte (13e editie) - 3 vwo

'Wortels vereenvoudigen'.

2 vwo 5.3 Wortels herleiden

Wortels vereenvoudigen (5)

opgave 1

Herleid.

2p

a

\(\sqrt{20}+\sqrt{80}\)

Optellen (5)
0085 - Wortels vereenvoudigen - basis - 0ms

a

\(\sqrt{20}+\sqrt{80}=\sqrt{4}⋅\sqrt{5}+\sqrt{16}⋅\sqrt{5}=2\sqrt{5}+4\sqrt{5}\text{.}\)

1p

\(2\sqrt{5}+4\sqrt{5}=6\sqrt{5}\text{.}\)

1p

1p

b

\(\sqrt{300}\)

FactorVoorWortelteken (1)
0086 - Wortels vereenvoudigen - basis - 0ms

b

\(\sqrt{300}=\sqrt{100}⋅\sqrt{3}=10\sqrt{3}\text{.}\)

1p

1p

c

\(-5\sqrt{125}\)

FactorVoorWortelteken (2)
0087 - Wortels vereenvoudigen - basis - 0ms

c

\(-5\sqrt{125}=-5⋅\sqrt{25}⋅\sqrt{5}=-5⋅5⋅\sqrt{5}=-25\sqrt{5}\text{.}\)

1p

2p

d

\(2\sqrt{12}+4\sqrt{75}\)

Optellen (6)
0088 - Wortels vereenvoudigen - basis - 0ms

d

\(2\sqrt{12}+4\sqrt{75}=2⋅\sqrt{4}⋅\sqrt{3}+4⋅\sqrt{25}⋅\sqrt{3}\text{.}\)

1p

\(2⋅2⋅\sqrt{3}+4⋅5⋅\sqrt{3}=4\sqrt{3}+20\sqrt{3}=24\sqrt{3}\text{.}\)

1p

opgave 2

Herleid.

1p

\(\sqrt{1\frac{32}{49}}\)

BreukInWortel (1)
008b - Wortels vereenvoudigen - basis - 56ms

\(\sqrt{1\frac{32}{49}}=\sqrt{\frac{81}{49}}={\sqrt{81} \over \sqrt{49}}=\frac{9}{7}=1\frac{2}{7}\text{.}\)

1p

3 vwo 5.5 Wortels herleiden

Wortels vereenvoudigen (6)

opgave 1

Herleid.

1p

a

\({8 \over 7\sqrt{2}}\)

WortelInNoemer
0089 - Wortels vereenvoudigen - basis - 1ms

a

\({8 \over 7\sqrt{2}}={8 \over 7\sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={8\sqrt{2} \over 7⋅2}=\frac{4}{7}\sqrt{2}\text{.}\)

1p

1p

b

\(\sqrt{20\frac{3}{4}}\)

BreukInWortel (2)
008c - Wortels vereenvoudigen - basis - 1ms

b

\(\sqrt{20\frac{3}{4}}=\sqrt{\frac{83}{4}}={\sqrt{83} \over \sqrt{4}}={\sqrt{83} \over 2}=\frac{1}{2}\sqrt{83}\text{.}\)

1p

1p

c

\(\sqrt{\frac{16}{63}}\)

BreukInWortel (3)
008d - Wortels vereenvoudigen - basis - 1ms

c

\(\sqrt{\frac{16}{63}}={\sqrt{16} \over \sqrt{63}}={4 \over \sqrt{63}}⋅{\sqrt{63} \over \sqrt{63}}={4\sqrt{63} \over 63}=\frac{4}{63}\sqrt{63}=\frac{4}{63}⋅3⋅\sqrt{7}=\frac{4}{21}\sqrt{7}\text{.}\)

1p

1p

d

\(\sqrt{37\frac{1}{2}}\)

BreukInWortel (4)
008e - Wortels vereenvoudigen - basis - 1ms

d

\(\sqrt{37\frac{1}{2}}=\sqrt{\frac{75}{2}}={\sqrt{75} \over \sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={\sqrt{150} \over 2}=\frac{1}{2}\sqrt{150}=\frac{1}{2}⋅5⋅\sqrt{6}=2\frac{1}{2}\sqrt{6}\text{.}\)

1p

opgave 2

Herleid.

1p

a

\({21\sqrt{120} \over 3\sqrt{10}}\)

Delen (4)
00dc - Wortels vereenvoudigen - basis - 9ms

a

\({21\sqrt{120} \over 3\sqrt{10}}={21 \over 3}⋅{\sqrt{120} \over \sqrt{10}}=7\sqrt{12}=7⋅\sqrt{4}⋅\sqrt{3}=7⋅2⋅\sqrt{3}=14\sqrt{3}\)

1p

1p

b

\(5\sqrt{10}⋅3\sqrt{2}\)

Vermenigvuldigen (5)
00dd - Wortels vereenvoudigen - basis - 3ms - data pool: #22 (3ms)

b

\(5\sqrt{10}⋅3\sqrt{2}=15\sqrt{20}=15⋅\sqrt{4}⋅\sqrt{5}=15⋅2⋅\sqrt{5}=30\sqrt{5}\)

1p

"