Getal & Ruimte (13e editie) - 3 vwo
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{48}+\sqrt{300}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis - 0ms a \(\sqrt{48}+\sqrt{300}=\sqrt{16}⋅\sqrt{3}+\sqrt{100}⋅\sqrt{3}=4\sqrt{3}+10\sqrt{3}\text{.}\) 1p ○ \(4\sqrt{3}+10\sqrt{3}=14\sqrt{3}\text{.}\) 1p 1p b \(\sqrt{32}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{32}=\sqrt{16}⋅\sqrt{2}=4\sqrt{2}\text{.}\) 1p 1p c \(2\sqrt{63}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis - 0ms c \(2\sqrt{63}=2⋅\sqrt{9}⋅\sqrt{7}=2⋅3⋅\sqrt{7}=6\sqrt{7}\text{.}\) 1p 2p d \(6\sqrt{8}+3\sqrt{200}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis - 0ms d \(6\sqrt{8}+3\sqrt{200}=6⋅\sqrt{4}⋅\sqrt{2}+3⋅\sqrt{100}⋅\sqrt{2}\text{.}\) 1p ○ \(6⋅2⋅\sqrt{2}+3⋅10⋅\sqrt{2}=12\sqrt{2}+30\sqrt{2}=42\sqrt{2}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{\frac{64}{81}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis - 0ms ○ \(\sqrt{\frac{64}{81}}={\sqrt{64} \over \sqrt{81}}=\frac{8}{9}\text{.}\) 1p |
|
| 3 vwo | 5.5 Wortels herleiden |
opgave 1Herleid. 1p a \({4 \over 5\sqrt{5}}\) WortelInNoemer 0089 - Wortels vereenvoudigen - basis - 0ms a \({4 \over 5\sqrt{5}}={4 \over 5\sqrt{5}}⋅{\sqrt{5} \over \sqrt{5}}={4\sqrt{5} \over 5⋅5}=\frac{4}{25}\sqrt{5}\text{.}\) 1p 1p b \(\sqrt{\frac{5}{36}}\) BreukInWortel (2) 008c - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{\frac{5}{36}}={\sqrt{5} \over \sqrt{36}}={\sqrt{5} \over 6}=\frac{1}{6}\sqrt{5}\text{.}\) 1p 1p c \(\sqrt{\frac{49}{90}}\) BreukInWortel (3) 008d - Wortels vereenvoudigen - basis - 1ms c \(\sqrt{\frac{49}{90}}={\sqrt{49} \over \sqrt{90}}={7 \over \sqrt{90}}⋅{\sqrt{90} \over \sqrt{90}}={7\sqrt{90} \over 90}=\frac{7}{90}\sqrt{90}=\frac{7}{90}⋅3⋅\sqrt{10}=\frac{7}{30}\sqrt{10}\text{.}\) 1p 1p d \(\sqrt{6\frac{1}{3}}\) BreukInWortel (4) 008e - Wortels vereenvoudigen - basis - 0ms d \(\sqrt{6\frac{1}{3}}=\sqrt{\frac{19}{3}}={\sqrt{19} \over \sqrt{3}}⋅{\sqrt{3} \over \sqrt{3}}={\sqrt{57} \over 3}=\frac{1}{3}\sqrt{57}\text{.}\) 1p opgave 2Herleid. 1p a \({2\sqrt{140} \over \sqrt{7}}\) Delen (4) 00dc - Wortels vereenvoudigen - basis - 10ms a \({2\sqrt{140} \over \sqrt{7}}=2⋅{\sqrt{140} \over \sqrt{7}}=2\sqrt{20}=2⋅\sqrt{4}⋅\sqrt{5}=2⋅2⋅\sqrt{5}=4\sqrt{5}\) 1p 1p b \(5\sqrt{7}⋅3\sqrt{14}\) Vermenigvuldigen (5) 00dd - Wortels vereenvoudigen - basis - 3ms - data pool: #22 (3ms) b \(5\sqrt{7}⋅3\sqrt{14}=15\sqrt{98}=15⋅\sqrt{49}⋅\sqrt{2}=15⋅7⋅\sqrt{2}=105\sqrt{2}\) 1p |