Getal & Ruimte (13e editie) - 3 vwo

'Ontbinden in factoren'.

2 vwo 7.1 Buiten haakjes brengen

Ontbinden in factoren (17)

opgave 1

Ontbind in factoren.

1p

a

\(x^2+3x\)

BuitenHaakjes (1)
00hd - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(x^2+3x=x(x+3)\)

1p

1p

b

\(6a^2-15a\)

BuitenHaakjes (2)
00he - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(6a^2-15a=3a(2a-5)\)

1p

1p

c

\(6ab+8a\)

BuitenHaakjes (3)
00hf - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(6ab+8a=2a(3b+4)\)

1p

1p

d

\(9pq+21pr\)

BuitenHaakjes (4)
00hg - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(9pq+21pr=3p(3q+7r)\)

1p

opgave 2

Ontbind in factoren.

1p

a

\(10xyz+45xy\)

BuitenHaakjes (5)
00hh - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(10xyz+45xy=5xy(2z+9)\)

1p

1p

b

\(15x^2+24x^3\)

BuitenHaakjes (6)
00hi - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(15x^2+24x^3=3x^2(5+8x)\)

1p

1p

c

\(5a+7a^7+a^3\)

BuitenHaakjes (7)
00hj - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(5a+7a^7+a^3=a(5+7a^6+a^2)\)

1p

1p

d

\(15x^3y^4-21x^4y^5\)

BuitenHaakjes (8)
00hk - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(15x^3y^4-21x^4y^5=3x^3y^4(5-7xy)\)

1p

opgave 3

Ontbind in factoren.

1p

a

\(a^2-4\)

Verschil2Kwadraten (1)
00hl - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(a^2-4=(a-2)(a+2)\)

1p

1p

b

\(64p^2-121\)

Verschil2Kwadraten (2)
00hm - Ontbinden in factoren - basis - 1ms - dynamic variables

b

\(64p^2-121=(8p-11)(8p+11)\)

1p

1p

c

\(64-25x^2\)

Verschil2Kwadraten (3)
00hs - Ontbinden in factoren - basis - 1ms - dynamic variables

c

\(64-25x^2=(8-5x)(8+5x)\)

1p

1p

d

\(144x^8-25\)

Verschil2Kwadraten (4)
00ht - Ontbinden in factoren - basis - 1ms - dynamic variables

d

\(144x^8-25=(12x^4-5)(12x^4+5)\)

1p

opgave 4

Ontbind in factoren.

1p

a

\(36p^2-16\)

Verschil2Kwadraten (5)
00hu - Ontbinden in factoren - basis - 1ms - dynamic variables

a

\(36p^2-16=4(9p^2-4)=4(3p-2)(3p+2)\)

1p

1p

b

\(48a^3-3a\)

Verschil2Kwadraten (6)
00hv - Ontbinden in factoren - basis - 1ms - dynamic variables

b

\(48a^3-3a=3a(16a^2-1)=3a(4a-1)(4a+1)\)

1p

1p

c

\(a^{12}-81\)

Verschil2Kwadraten (7)
00hw - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(a^{12}-81=(a^6-9)(a^6+9)=(a^3-3)(a^3+3)(a^6+9)\)

1p

1p

d

\(3a^6-48a^2\)

Verschil2Kwadraten (8)
00hx - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(3a^6-48a^2=3a^2(a^4-16)=3a^2(a^2-4)(a^2+4)=3a^2(a-2)(a+2)(a^2+4)\)

1p

opgave 5

Ontbind in factoren.

1p

\(p^2q^{10}-r^2\)

Verschil2Kwadraten (9)
00hz - Ontbinden in factoren - basis - 0ms - dynamic variables

\(p^2q^{10}-r^2=(pq^5-r)(pq^5+r)\)

1p

2 vwo 7.2 De product-som methode

Ontbinden in factoren (6)

opgave 1

Ontbind in factoren.

1p

a

\(x^2+7x+6\)

SomProductmethode (1)
00hn - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(x^2+7x+6=(x+1)(x+6)\)

1p

1p

b

\(a^2+a-20\)

SomProductmethode (2)
00ho - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(a^2+a-20=(a-4)(a+5)\)

1p

1p

c

\(p^2-10p+16\)

SomProductmethode (3)
00hp - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(p^2-10p+16=(p-8)(p-2)\)

1p

1p

d

\(x^2-18x+81\)

SomProductmethode (4)
00hq - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(x^2-18x+81=(x-9)(x-9)\)

1p

opgave 2

Ontbind in factoren.

1p

a

\(a^4-3a^3-28a^2\)

SomProductmethode (5)
00hr - Ontbinden in factoren - basis - 1ms - dynamic variables

a

\(a^4-3a^3-28a^2=a^2(a^2-3a-28)=a^2(a+4)(a-7)\)

1p

1p

b

\(a^8+15a^4+56\)

SomProductmethode (6)
00hy - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(a^8+15a^4+56=(a^4+8)(a^4+7)\)

1p

"