Getal & Ruimte (13e editie) - 3 vwo
'Lineaire ongelijkheden'.
| 3 vwo | 7.1 Lineaire ongelijkheden |
opgave 1Los exact op. 3p a \(4(x-6)<-8x+60\) 1SetHaakjesGeheel (1) 002o - Lineaire ongelijkheden - gevorderd - 0ms - dynamic variables a Haakjes wegwerken geeft \(4x-24<-8x+60\text{.}\) 1p ○ De balansmethode geeft \(12x<84\text{.}\) 1p ○ Delen door \(12\) geeft \(x<7\text{.}\) 1p 3p b \(-6q+18<4q-12\) 4TermenGeheel (2) 002p - Lineaire ongelijkheden - gevorderd - 0ms - dynamic variables b Aan beide kanten \(4q\) aftrekken geeft \(-10q+18<-12\text{.}\) 1p ○ Aan beide kanten \(18\) aftrekken geeft \(-10q<-30\text{.}\) 1p ○ Beide kanten delen door \(-10\) geeft \(q>3\text{.}\) 1p 2p c \(7q+9<51\) Ongelijkheid 002q - Lineaire ongelijkheden - basis - 0ms - dynamic variables c Aan beiden kanten \(9\) aftrekken geeft \(7q<42\text{.}\) 1p ○ Beide kanten delen door \(7\) geeft \(q<6\text{.}\) 1p 2p d \(-2x+7<15\) 3TermenGeheel (2) 002r - Lineaire ongelijkheden - basis - 0ms - dynamic variables d Aan beiden kanten \(7\) aftrekken geeft \(-2x<8\text{.}\) 1p ○ Beide kanten delen door \(-2\) geeft \(x>-4\text{.}\) 1p opgave 2Los exact op. 3p a \(9t-7>4t+43\) 4TermenGeheel (1) 002s - Lineaire ongelijkheden - gevorderd - 0ms - dynamic variables a Aan beide kanten \(4t\) aftrekken geeft \(5t-7>43\text{.}\) 1p ○ Aan beide kanten \(7\) optellen geeft \(5t>50\text{.}\) 1p ○ Beide kanten delen door \(5\) geeft \(t>10\text{.}\) 1p 3p b \(-9(x-5)>3x-27\) 1SetHaakjesGeheel (2) 002t - Lineaire ongelijkheden - gevorderd - 1ms - dynamic variables b Haakjes wegwerken geeft \(-9x+45>3x-27\text{.}\) 1p ○ De balansmethode geeft \(-12x>-72\text{.}\) 1p ○ Delen door \(-12\) geeft \(x<6\text{.}\) 1p 3p c \(5(x+13)<4(-2x)\) 2SetsHaakjesGeheel (1) 002v - Lineaire ongelijkheden - gevorderd - 0ms - dynamic variables c Haakjes wegwerken geeft \(5x+65<-8x\text{.}\) 1p ○ De balansmethode geeft \(13x<-65\text{.}\) 1p ○ Delen door \(13\) geeft \(x<-5\text{.}\) 1p 3p d \(-7(q+8)>4(3q-33)\) 2SetsHaakjesGeheel (2) 002w - Lineaire ongelijkheden - gevorderd - 0ms - dynamic variables d Haakjes wegwerken geeft \(-7q-56>12q-132\text{.}\) 1p ○ De balansmethode geeft \(-19q>-76\text{.}\) 1p ○ Delen door \(-19\) geeft \(q<4\text{.}\) 1p |