Getal & Ruimte (13e editie) - 3 havo
'Sinus, cosinus en tangens'.
| 3 havo | 6.3 Berekeningen met de tangens |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=48\text{,}\) \(\angle L=47\degree\) en \(\angle M=90\degree\text{.}\) Tangens (1) 007m - Sinus, cosinus en tangens - basis - 0ms a Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle L)={K\kern{-.8pt}M \over L\kern{-.8pt}M}\) ofwel \(\tan(47\degree)={K\kern{-.8pt}M \over 48}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M=48⋅\tan(47\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈51{,}5\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=34\text{,}\) \(\angle C=42\degree\) en \(\angle A=90\degree\text{.}\) Tangens (2) 007n - Sinus, cosinus en tangens - basis - 0ms b Tangens in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\tan(\angle C)={A\kern{-.8pt}B \over A\kern{-.8pt}C}\) ofwel \(\tan(42\degree)={34 \over A\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}C={34 \over \tan(42\degree)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C≈37{,}8\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=51\text{,}\) \(P\kern{-.8pt}R=54\) en \(\angle R=90\degree\text{.}\) Tangens (3) 007o - Sinus, cosinus en tangens - basis - 0ms c Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle Q)={P\kern{-.8pt}R \over Q\kern{-.8pt}R}\) ofwel \(\tan(\angle Q)={54 \over 51}\text{.}\) 1p ○ Hieruit volgt \(\angle Q=\tan^{-1}({54 \over 51})\text{.}\) 1p ○ Dus \(\angle Q≈46{,}6\degree\text{.}\) 1p |
|
| 3 havo | 6.4 De sinus en de cosinus |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}L=62\text{,}\) \(\angle L=40\degree\) en \(\angle M=90\degree\text{.}\) Sinus (1) 007g - Sinus, cosinus en tangens - basis - 0ms a Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle L)={K\kern{-.8pt}M \over K\kern{-.8pt}L}\) ofwel \(\sin(40\degree)={K\kern{-.8pt}M \over 62}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M=62⋅\sin(40\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈39{,}9\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=43\text{,}\) \(\angle K=46\degree\) en \(\angle L=90\degree\text{.}\) Sinus (2) 007h - Sinus, cosinus en tangens - basis - 0ms b Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle K)={L\kern{-.8pt}M \over K\kern{-.8pt}M}\) ofwel \(\sin(46\degree)={43 \over K\kern{-.8pt}M}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M={43 \over \sin(46\degree)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈59{,}8\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=40\text{,}\) \(P\kern{-.8pt}Q=65\) en \(\angle R=90\degree\text{.}\) Sinus (3) 007i - Sinus, cosinus en tangens - basis - 0ms c Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle Q)={P\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\sin(\angle Q)={40 \over 65}\text{.}\) 1p ○ Hieruit volgt \(\angle Q=\sin^{-1}({40 \over 65})\text{.}\) 1p ○ Dus \(\angle Q≈38{,}0\degree\text{.}\) 1p 3p d Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=70\text{,}\) \(\angle A=59\degree\) en \(\angle B=90\degree\text{.}\) Cosinus (1) 007j - Sinus, cosinus en tangens - basis - 0ms d Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle A)={A\kern{-.8pt}B \over A\kern{-.8pt}C}\) ofwel \(\cos(59\degree)={A\kern{-.8pt}B \over 70}\text{.}\) 1p ○ Hieruit volgt \(A\kern{-.8pt}B=70⋅\cos(59\degree)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B≈36{,}1\text{.}\) 1p opgave 23p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=35\text{,}\) \(\angle C=43\degree\) en \(\angle A=90\degree\text{.}\) Cosinus (2) 007k - Sinus, cosinus en tangens - basis - 0ms a Cosinus in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(\cos(\angle C)={A\kern{-.8pt}C \over B\kern{-.8pt}C}\) ofwel \(\cos(43\degree)={35 \over B\kern{-.8pt}C}\text{.}\) 1p ○ Hieruit volgt \(B\kern{-.8pt}C={35 \over \cos(43\degree)}\text{.}\) 1p ○ Dus \(B\kern{-.8pt}C≈47{,}9\text{.}\) 1p 3p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=60\text{,}\) \(P\kern{-.8pt}Q=68\) en \(\angle R=90\degree\text{.}\) Cosinus (3) 007l - Sinus, cosinus en tangens - basis - 0ms b Cosinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\cos(\angle Q)={Q\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\cos(\angle Q)={60 \over 68}\text{.}\) 1p ○ Hieruit volgt \(\angle Q=\cos^{-1}({60 \over 68})\text{.}\) 1p ○ Dus \(\angle Q≈28{,}1\degree\text{.}\) 1p |