Getal & Ruimte (13e editie) - 2 vwo
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{18}+\sqrt{32}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis - 0ms a \(\sqrt{18}+\sqrt{32}=\sqrt{9}⋅\sqrt{2}+\sqrt{16}⋅\sqrt{2}=3\sqrt{2}+4\sqrt{2}\text{.}\) 1p ○ \(3\sqrt{2}+4\sqrt{2}=7\sqrt{2}\text{.}\) 1p 1p b \(\sqrt{27}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{27}=\sqrt{9}⋅\sqrt{3}=3\sqrt{3}\text{.}\) 1p 1p c \(-7\sqrt{300}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis - 0ms c \(-7\sqrt{300}=-7⋅\sqrt{100}⋅\sqrt{3}=-7⋅10⋅\sqrt{3}=-70\sqrt{3}\text{.}\) 1p 2p d \(2\sqrt{75}-3\sqrt{27}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis - 0ms d \(2\sqrt{75}-3\sqrt{27}=2⋅\sqrt{25}⋅\sqrt{3}-3⋅\sqrt{9}⋅\sqrt{3}\text{.}\) 1p ○ \(2⋅5⋅\sqrt{3}-3⋅3⋅\sqrt{3}=10\sqrt{3}-9\sqrt{3}=1\sqrt{3}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{3\frac{1}{16}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis - 56ms ○ \(\sqrt{3\frac{1}{16}}=\sqrt{\frac{49}{16}}={\sqrt{49} \over \sqrt{16}}=\frac{7}{4}=1\frac{3}{4}\text{.}\) 1p |