Getal & Ruimte (13e editie) - 2 vwo
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{32}+\sqrt{18}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis - 0ms a \(\sqrt{32}+\sqrt{18}=\sqrt{16}⋅\sqrt{2}+\sqrt{9}⋅\sqrt{2}=4\sqrt{2}+3\sqrt{2}\text{.}\) 1p ○ \(4\sqrt{2}+3\sqrt{2}=7\sqrt{2}\text{.}\) 1p 1p b \(\sqrt{75}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{75}=\sqrt{25}⋅\sqrt{3}=5\sqrt{3}\text{.}\) 1p 1p c \(-5\sqrt{125}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis - 0ms c \(-5\sqrt{125}=-5⋅\sqrt{25}⋅\sqrt{5}=-5⋅5⋅\sqrt{5}=-25\sqrt{5}\text{.}\) 1p 2p d \(4\sqrt{48}-7\sqrt{27}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis - 0ms d \(4\sqrt{48}-7\sqrt{27}=4⋅\sqrt{16}⋅\sqrt{3}-7⋅\sqrt{9}⋅\sqrt{3}\text{.}\) 1p ○ \(4⋅4⋅\sqrt{3}-7⋅3⋅\sqrt{3}=16\sqrt{3}-21\sqrt{3}=-5\sqrt{3}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{6\frac{1}{4}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis - 0ms ○ \(\sqrt{6\frac{1}{4}}=\sqrt{\frac{25}{4}}={\sqrt{25} \over \sqrt{4}}=\frac{5}{2}=2\frac{1}{2}\text{.}\) 1p |