Getal & Ruimte (13e editie) - 2 vwo
'Ontbinden in factoren'.
| 2 vwo | 7.1 Buiten haakjes brengen |
opgave 1Ontbind in factoren. 1p a \(a^2+3a\) BuitenHaakjes (1) 00hd - Ontbinden in factoren - basis - 0ms - dynamic variables a \(a^2+3a=a(a+3)\) 1p 1p b \(8x^2+20x\) BuitenHaakjes (2) 00he - Ontbinden in factoren - basis - 0ms - dynamic variables b \(8x^2+20x=4x(2x+5)\) 1p 1p c \(20xy+25x\) BuitenHaakjes (3) 00hf - Ontbinden in factoren - basis - 0ms - dynamic variables c \(20xy+25x=5x(4y+5)\) 1p 1p d \(15ab+20ac\) BuitenHaakjes (4) 00hg - Ontbinden in factoren - basis - 0ms - dynamic variables d \(15ab+20ac=5a(3b+4c)\) 1p opgave 2Ontbind in factoren. 1p a \(15pqr+18pq\) BuitenHaakjes (5) 00hh - Ontbinden in factoren - basis - 0ms - dynamic variables a \(15pqr+18pq=3pq(5r+6)\) 1p 1p b \(9x^3+24x^5\) BuitenHaakjes (6) 00hi - Ontbinden in factoren - basis - 0ms - dynamic variables b \(9x^3+24x^5=3x^3(3+8x^2)\) 1p 1p c \(3a^5-4a^6+a^4\) BuitenHaakjes (7) 00hj - Ontbinden in factoren - basis - 0ms - dynamic variables c \(3a^5-4a^6+a^4=a^4(3a-4a^2+1)\) 1p 1p d \(8x^2y^2-36x^5y^4\) BuitenHaakjes (8) 00hk - Ontbinden in factoren - basis - 0ms - dynamic variables d \(8x^2y^2-36x^5y^4=4x^2y^2(2-9x^3y^2)\) 1p opgave 3Ontbind in factoren. 1p a \(a^2-1\) Verschil2Kwadraten (1) 00hl - Ontbinden in factoren - basis - 0ms - dynamic variables a \(a^2-1=(a-1)(a+1)\) 1p 1p b \(36p^2-1\) Verschil2Kwadraten (2) 00hm - Ontbinden in factoren - basis - 1ms - dynamic variables b \(36p^2-1=(6p-1)(6p+1)\) 1p 1p c \(100-49x^2\) Verschil2Kwadraten (3) 00hs - Ontbinden in factoren - basis - 1ms - dynamic variables c \(100-49x^2=(10-7x)(10+7x)\) 1p 1p d \(121p^{10}-64\) Verschil2Kwadraten (4) 00ht - Ontbinden in factoren - basis - 0ms - dynamic variables d \(121p^{10}-64=(11p^5-8)(11p^5+8)\) 1p opgave 4Ontbind in factoren. 1p a \(100x^2-16\) Verschil2Kwadraten (5) 00hu - Ontbinden in factoren - basis - 1ms - dynamic variables a \(100x^2-16=4(25x^2-4)=4(5x-2)(5x+2)\) 1p 1p b \(80a^3-5a\) Verschil2Kwadraten (6) 00hv - Ontbinden in factoren - basis - 1ms - dynamic variables b \(80a^3-5a=5a(16a^2-1)=5a(4a-1)(4a+1)\) 1p 1p c \(a^4-16\) Verschil2Kwadraten (7) 00hw - Ontbinden in factoren - basis - 0ms - dynamic variables c \(a^4-16=(a^2-4)(a^2+4)=(a-2)(a+2)(a^2+4)\) 1p 1p d \(2a^{13}-162a\) Verschil2Kwadraten (8) 00hx - Ontbinden in factoren - basis - 0ms - dynamic variables d \(2a^{13}-162a=2a(a^{12}-81)=2a(a^6-9)(a^6+9)=2a(a^3-3)(a^3+3)(a^6+9)\) 1p opgave 5Ontbind in factoren. 1p \(p^6q^4-81r^8\) Verschil2Kwadraten (9) 00hz - Ontbinden in factoren - basis - 0ms - dynamic variables ○ \(p^6q^4-81r^8=(p^3q^2-9r^4)(p^3q^2+9r^4)\) 1p |
|
| 2 vwo | 7.2 De product-som methode |
opgave 1Ontbind in factoren. 1p a \(p^2+11p+28\) SomProductmethode (1) 00hn - Ontbinden in factoren - basis - 0ms - dynamic variables a \(p^2+11p+28=(p+4)(p+7)\) 1p 1p b \(a^2+5a-24\) SomProductmethode (2) 00ho - Ontbinden in factoren - basis - 0ms - dynamic variables b \(a^2+5a-24=(a-3)(a+8)\) 1p 1p c \(a^2-11a+30\) SomProductmethode (3) 00hp - Ontbinden in factoren - basis - 0ms - dynamic variables c \(a^2-11a+30=(a-6)(a-5)\) 1p 1p d \(x^2+16x+64\) SomProductmethode (4) 00hq - Ontbinden in factoren - basis - 0ms - dynamic variables d \(x^2+16x+64=(x+8)(x+8)\) 1p opgave 2Ontbind in factoren. 1p a \(2x^5+10x^4-48x^3\) SomProductmethode (5) 00hr - Ontbinden in factoren - basis - 1ms - dynamic variables a \(2x^5+10x^4-48x^3=2x^3(x^2+5x-24)=2x^3(x+8)(x-3)\) 1p 1p b \(a^{14}-3a^7-40\) SomProductmethode (6) 00hy - Ontbinden in factoren - basis - 0ms - dynamic variables b \(a^{14}-3a^7-40=(a^7-8)(a^7+5)\) 1p |