Getal & Ruimte (13e editie) - 2 vwo

'Ontbinden in factoren'.

2 vwo 7.1 Buiten haakjes brengen

Ontbinden in factoren (17)

opgave 1

Ontbind in factoren.

1p

a

\(a^2+3a\)

BuitenHaakjes (1)
00hd - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(a^2+3a=a(a+3)\)

1p

1p

b

\(8x^2+20x\)

BuitenHaakjes (2)
00he - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(8x^2+20x=4x(2x+5)\)

1p

1p

c

\(20xy+25x\)

BuitenHaakjes (3)
00hf - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(20xy+25x=5x(4y+5)\)

1p

1p

d

\(15ab+20ac\)

BuitenHaakjes (4)
00hg - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(15ab+20ac=5a(3b+4c)\)

1p

opgave 2

Ontbind in factoren.

1p

a

\(15pqr+18pq\)

BuitenHaakjes (5)
00hh - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(15pqr+18pq=3pq(5r+6)\)

1p

1p

b

\(9x^3+24x^5\)

BuitenHaakjes (6)
00hi - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(9x^3+24x^5=3x^3(3+8x^2)\)

1p

1p

c

\(3a^5-4a^6+a^4\)

BuitenHaakjes (7)
00hj - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(3a^5-4a^6+a^4=a^4(3a-4a^2+1)\)

1p

1p

d

\(8x^2y^2-36x^5y^4\)

BuitenHaakjes (8)
00hk - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(8x^2y^2-36x^5y^4=4x^2y^2(2-9x^3y^2)\)

1p

opgave 3

Ontbind in factoren.

1p

a

\(a^2-1\)

Verschil2Kwadraten (1)
00hl - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(a^2-1=(a-1)(a+1)\)

1p

1p

b

\(36p^2-1\)

Verschil2Kwadraten (2)
00hm - Ontbinden in factoren - basis - 1ms - dynamic variables

b

\(36p^2-1=(6p-1)(6p+1)\)

1p

1p

c

\(100-49x^2\)

Verschil2Kwadraten (3)
00hs - Ontbinden in factoren - basis - 1ms - dynamic variables

c

\(100-49x^2=(10-7x)(10+7x)\)

1p

1p

d

\(121p^{10}-64\)

Verschil2Kwadraten (4)
00ht - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(121p^{10}-64=(11p^5-8)(11p^5+8)\)

1p

opgave 4

Ontbind in factoren.

1p

a

\(100x^2-16\)

Verschil2Kwadraten (5)
00hu - Ontbinden in factoren - basis - 1ms - dynamic variables

a

\(100x^2-16=4(25x^2-4)=4(5x-2)(5x+2)\)

1p

1p

b

\(80a^3-5a\)

Verschil2Kwadraten (6)
00hv - Ontbinden in factoren - basis - 1ms - dynamic variables

b

\(80a^3-5a=5a(16a^2-1)=5a(4a-1)(4a+1)\)

1p

1p

c

\(a^4-16\)

Verschil2Kwadraten (7)
00hw - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(a^4-16=(a^2-4)(a^2+4)=(a-2)(a+2)(a^2+4)\)

1p

1p

d

\(2a^{13}-162a\)

Verschil2Kwadraten (8)
00hx - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(2a^{13}-162a=2a(a^{12}-81)=2a(a^6-9)(a^6+9)=2a(a^3-3)(a^3+3)(a^6+9)\)

1p

opgave 5

Ontbind in factoren.

1p

\(p^6q^4-81r^8\)

Verschil2Kwadraten (9)
00hz - Ontbinden in factoren - basis - 0ms - dynamic variables

\(p^6q^4-81r^8=(p^3q^2-9r^4)(p^3q^2+9r^4)\)

1p

2 vwo 7.2 De product-som methode

Ontbinden in factoren (6)

opgave 1

Ontbind in factoren.

1p

a

\(p^2+11p+28\)

SomProductmethode (1)
00hn - Ontbinden in factoren - basis - 0ms - dynamic variables

a

\(p^2+11p+28=(p+4)(p+7)\)

1p

1p

b

\(a^2+5a-24\)

SomProductmethode (2)
00ho - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(a^2+5a-24=(a-3)(a+8)\)

1p

1p

c

\(a^2-11a+30\)

SomProductmethode (3)
00hp - Ontbinden in factoren - basis - 0ms - dynamic variables

c

\(a^2-11a+30=(a-6)(a-5)\)

1p

1p

d

\(x^2+16x+64\)

SomProductmethode (4)
00hq - Ontbinden in factoren - basis - 0ms - dynamic variables

d

\(x^2+16x+64=(x+8)(x+8)\)

1p

opgave 2

Ontbind in factoren.

1p

a

\(2x^5+10x^4-48x^3\)

SomProductmethode (5)
00hr - Ontbinden in factoren - basis - 1ms - dynamic variables

a

\(2x^5+10x^4-48x^3=2x^3(x^2+5x-24)=2x^3(x+8)(x-3)\)

1p

1p

b

\(a^{14}-3a^7-40\)

SomProductmethode (6)
00hy - Ontbinden in factoren - basis - 0ms - dynamic variables

b

\(a^{14}-3a^7-40=(a^7-8)(a^7+5)\)

1p

"