Getal & Ruimte (13e editie) - 2 havo/vwo

'Stelling van Pythagoras'.

2 havo/vwo 6.2 Schuine zijden berekenen

Stelling van Pythagoras (1)

opgave 1

Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=58\text{,}\) \(P\kern{-.8pt}R=37\) en \(\angle \text{R}=90\degree\text{.}\)

QRP58?37

3p

Bereken de lengte van zijde \(P\kern{-.8pt}Q\text{.}\)
Rond indien nodig af op één decimaal.

Pythagoras (1)
007c - Stelling van Pythagoras - basis - 1ms

Pythagoras in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(Q\kern{-.8pt}R^2+P\kern{-.8pt}R^2=P\kern{-.8pt}Q^2\text{.}\)

1p

\(P\kern{-.8pt}Q^2=58^2+37^2=4\,733\text{.}\)

1p

\(P\kern{-.8pt}Q=\sqrt{4\,733}≈68{,}8\text{.}\)

1p

2 havo/vwo 6.3 Rechthoekszijden berekenen

Stelling van Pythagoras (1)

opgave 1

Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=50\text{,}\) \(Q\kern{-.8pt}R=62\) en \(\angle \text{P}=90\degree\text{.}\)

RPQ5062?

3p

Bereken de lengte van zijde \(P\kern{-.8pt}Q\text{.}\)
Rond indien nodig af op één decimaal.

Pythagoras (2)
007d - Stelling van Pythagoras - basis - 0ms

Pythagoras in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}R^2+P\kern{-.8pt}Q^2=Q\kern{-.8pt}R^2\) ofwel \(50^2+P\kern{-.8pt}Q^2=62^2\text{.}\)

1p

\(P\kern{-.8pt}Q^2=62^2-50^2=1\,344\text{.}\)

1p

\(P\kern{-.8pt}Q=\sqrt{1\,344}≈36{,}7\text{.}\)

1p

"