Getal & Ruimte (13e editie) - 2 havo/vwo
'Stelling van Pythagoras'.
| 2 havo/vwo | 6.2 Schuine zijden berekenen |
opgave 1Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=41\text{,}\) \(K\kern{-.8pt}M=51\) en \(\angle \text{M}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(K\kern{-.8pt}L\text{.}\) Pythagoras (1) 007c - Stelling van Pythagoras - basis - 1ms ○ Pythagoras in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2+K\kern{-.8pt}M^2=K\kern{-.8pt}L^2\text{.}\) 1p ○ \(K\kern{-.8pt}L^2=41^2+51^2=4\,282\text{.}\) 1p ○ \(K\kern{-.8pt}L=\sqrt{4\,282}≈65{,}4\text{.}\) 1p |
|
| 2 havo/vwo | 6.3 Rechthoekszijden berekenen |
opgave 1Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=25\text{,}\) \(P\kern{-.8pt}Q=57\) en \(\angle \text{R}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(P\kern{-.8pt}R\text{.}\) Pythagoras (2) 007d - Stelling van Pythagoras - basis - 0ms ○ Pythagoras in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(Q\kern{-.8pt}R^2+P\kern{-.8pt}R^2=P\kern{-.8pt}Q^2\) ofwel \(25^2+P\kern{-.8pt}R^2=57^2\text{.}\) 1p ○ \(P\kern{-.8pt}R^2=57^2-25^2=2\,624\text{.}\) 1p ○ \(P\kern{-.8pt}R=\sqrt{2\,624}≈51{,}2\text{.}\) 1p |