Getal & Ruimte (12e editie) - vwo wiskunde B

'Wortels vereenvoudigen'.

2 vwo 5.3 Wortels herleiden

Wortels vereenvoudigen (5)

opgave 1

Herleid.

2p

a

\(\sqrt{200}+\sqrt{18}\)

Optellen (5)
0085 - Wortels vereenvoudigen - basis - 0ms

a

\(\sqrt{200}+\sqrt{18}=\sqrt{100}⋅\sqrt{2}+\sqrt{9}⋅\sqrt{2}=10\sqrt{2}+3\sqrt{2}\text{.}\)

1p

\(10\sqrt{2}+3\sqrt{2}=13\sqrt{2}\text{.}\)

1p

1p

b

\(\sqrt{300}\)

FactorVoorWortelteken (1)
0086 - Wortels vereenvoudigen - basis - 0ms

b

\(\sqrt{300}=\sqrt{100}⋅\sqrt{3}=10\sqrt{3}\text{.}\)

1p

1p

c

\(7\sqrt{125}\)

FactorVoorWortelteken (2)
0087 - Wortels vereenvoudigen - basis - 0ms

c

\(7\sqrt{125}=7⋅\sqrt{25}⋅\sqrt{5}=7⋅5⋅\sqrt{5}=35\sqrt{5}\text{.}\)

1p

2p

d

\(2\sqrt{75}-7\sqrt{12}\)

Optellen (6)
0088 - Wortels vereenvoudigen - basis - 0ms

d

\(2\sqrt{75}-7\sqrt{12}=2⋅\sqrt{25}⋅\sqrt{3}-7⋅\sqrt{4}⋅\sqrt{3}\text{.}\)

1p

\(2⋅5⋅\sqrt{3}-7⋅2⋅\sqrt{3}=10\sqrt{3}-14\sqrt{3}=-4\sqrt{3}\text{.}\)

1p

opgave 2

Herleid.

1p

\(\sqrt{\frac{1}{49}}\)

BreukInWortel (1)
008b - Wortels vereenvoudigen - basis - 0ms

\(\sqrt{\frac{1}{49}}={\sqrt{1} \over \sqrt{49}}=\frac{1}{7}\text{.}\)

1p

3 vwo 5.5 Wortels herleiden

Wortels vereenvoudigen (6)

opgave 1

Herleid.

1p

a

\({9 \over 8\sqrt{2}}\)

WortelInNoemer
0089 - Wortels vereenvoudigen - basis - 0ms

a

\({9 \over 8\sqrt{2}}={9 \over 8\sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={9\sqrt{2} \over 8⋅2}=\frac{9}{16}\sqrt{2}\text{.}\)

1p

1p

b

\(\sqrt{\frac{48}{49}}\)

BreukInWortel (2)
008c - Wortels vereenvoudigen - basis - 0ms

b

\(\sqrt{\frac{48}{49}}={\sqrt{48} \over \sqrt{49}}={\sqrt{48} \over 7}=\frac{1}{7}\sqrt{48}=\frac{1}{7}⋅4⋅\sqrt{3}=\frac{4}{7}\sqrt{3}\text{.}\)

1p

1p

c

\(\sqrt{1\frac{9}{91}}\)

BreukInWortel (3)
008d - Wortels vereenvoudigen - basis - 1ms

c

\(\sqrt{1\frac{9}{91}}=\sqrt{\frac{100}{91}}={\sqrt{100} \over \sqrt{91}}={10 \over \sqrt{91}}⋅{\sqrt{91} \over \sqrt{91}}={10\sqrt{91} \over 91}=\frac{10}{91}\sqrt{91}\text{.}\)

1p

1p

d

\(\sqrt{13\frac{1}{2}}\)

BreukInWortel (4)
008e - Wortels vereenvoudigen - basis - 0ms

d

\(\sqrt{13\frac{1}{2}}=\sqrt{\frac{27}{2}}={\sqrt{27} \over \sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={\sqrt{54} \over 2}=\frac{1}{2}\sqrt{54}=\frac{1}{2}⋅3⋅\sqrt{6}=1\frac{1}{2}\sqrt{6}\text{.}\)

1p

opgave 2

Herleid.

1p

a

\({21\sqrt{168} \over 3\sqrt{6}}\)

Delen (4)
00dc - Wortels vereenvoudigen - basis - 10ms

a

\({21\sqrt{168} \over 3\sqrt{6}}={21 \over 3}⋅{\sqrt{168} \over \sqrt{6}}=7\sqrt{28}=7⋅\sqrt{4}⋅\sqrt{7}=7⋅2⋅\sqrt{7}=14\sqrt{7}\)

1p

1p

b

\(3\sqrt{5}⋅5\sqrt{10}\)

Vermenigvuldigen (5)
00dd - Wortels vereenvoudigen - basis - 3ms - data pool: #22 (3ms)

b

\(3\sqrt{5}⋅5\sqrt{10}=15\sqrt{50}=15⋅\sqrt{25}⋅\sqrt{2}=15⋅5⋅\sqrt{2}=75\sqrt{2}\)

1p

"