Getal & Ruimte (12e editie) - vwo wiskunde B
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{12}+\sqrt{75}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis - 0ms a \(\sqrt{12}+\sqrt{75}=\sqrt{4}⋅\sqrt{3}+\sqrt{25}⋅\sqrt{3}=2\sqrt{3}+5\sqrt{3}\text{.}\) 1p ○ \(2\sqrt{3}+5\sqrt{3}=7\sqrt{3}\text{.}\) 1p 1p b \(\sqrt{300}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{300}=\sqrt{100}⋅\sqrt{3}=10\sqrt{3}\text{.}\) 1p 1p c \(4\sqrt{48}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis - 0ms c \(4\sqrt{48}=4⋅\sqrt{16}⋅\sqrt{3}=4⋅4⋅\sqrt{3}=16\sqrt{3}\text{.}\) 1p 2p d \(7\sqrt{18}-4\sqrt{8}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis - 0ms d \(7\sqrt{18}-4\sqrt{8}=7⋅\sqrt{9}⋅\sqrt{2}-4⋅\sqrt{4}⋅\sqrt{2}\text{.}\) 1p ○ \(7⋅3⋅\sqrt{2}-4⋅2⋅\sqrt{2}=21\sqrt{2}-8\sqrt{2}=13\sqrt{2}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{5\frac{4}{9}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis - 56ms ○ \(\sqrt{5\frac{4}{9}}=\sqrt{\frac{49}{9}}={\sqrt{49} \over \sqrt{9}}=\frac{7}{3}=2\frac{1}{3}\text{.}\) 1p |
|
| 3 vwo | 5.5 Wortels herleiden |
opgave 1Herleid. 1p a \({3 \over 7\sqrt{2}}\) WortelInNoemer 0089 - Wortels vereenvoudigen - basis - 1ms a \({3 \over 7\sqrt{2}}={3 \over 7\sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={3\sqrt{2} \over 7⋅2}=\frac{3}{14}\sqrt{2}\text{.}\) 1p 1p b \(\sqrt{1\frac{29}{36}}\) BreukInWortel (2) 008c - Wortels vereenvoudigen - basis - 1ms b \(\sqrt{1\frac{29}{36}}=\sqrt{\frac{65}{36}}={\sqrt{65} \over \sqrt{36}}={\sqrt{65} \over 6}=\frac{1}{6}\sqrt{65}\text{.}\) 1p 1p c \(\sqrt{\frac{1}{59}}\) BreukInWortel (3) 008d - Wortels vereenvoudigen - basis - 1ms c \(\sqrt{\frac{1}{59}}={\sqrt{1} \over \sqrt{59}}={1 \over \sqrt{59}}⋅{\sqrt{59} \over \sqrt{59}}={\sqrt{59} \over 59}=\frac{1}{59}\sqrt{59}\text{.}\) 1p 1p d \(\sqrt{\frac{3}{32}}\) BreukInWortel (4) 008e - Wortels vereenvoudigen - basis - 1ms d \(\sqrt{\frac{3}{32}}={\sqrt{3} \over \sqrt{32}}⋅{\sqrt{32} \over \sqrt{32}}={\sqrt{96} \over 32}=\frac{1}{32}\sqrt{96}=\frac{1}{32}⋅4⋅\sqrt{6}=\frac{1}{8}\sqrt{6}\text{.}\) 1p opgave 2Herleid. 1p a \({48\sqrt{120} \over 6\sqrt{3}}\) Delen (4) 00dc - Wortels vereenvoudigen - basis - 9ms a \({48\sqrt{120} \over 6\sqrt{3}}={48 \over 6}⋅{\sqrt{120} \over \sqrt{3}}=8\sqrt{40}=8⋅\sqrt{4}⋅\sqrt{10}=8⋅2⋅\sqrt{10}=16\sqrt{10}\) 1p 1p b \(4\sqrt{2}⋅2\sqrt{14}\) Vermenigvuldigen (5) 00dd - Wortels vereenvoudigen - basis - 3ms - data pool: #22 (3ms) b \(4\sqrt{2}⋅2\sqrt{14}=8\sqrt{28}=8⋅\sqrt{4}⋅\sqrt{7}=8⋅2⋅\sqrt{7}=16\sqrt{7}\) 1p |