Getal & Ruimte (12e editie) - vwo wiskunde B
'Wortels vereenvoudigen'.
| 2 vwo | 5.3 Wortels herleiden |
opgave 1Herleid. 2p a \(\sqrt{200}+\sqrt{18}\) Optellen (5) 0085 - Wortels vereenvoudigen - basis - 0ms a \(\sqrt{200}+\sqrt{18}=\sqrt{100}⋅\sqrt{2}+\sqrt{9}⋅\sqrt{2}=10\sqrt{2}+3\sqrt{2}\text{.}\) 1p ○ \(10\sqrt{2}+3\sqrt{2}=13\sqrt{2}\text{.}\) 1p 1p b \(\sqrt{300}\) FactorVoorWortelteken (1) 0086 - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{300}=\sqrt{100}⋅\sqrt{3}=10\sqrt{3}\text{.}\) 1p 1p c \(7\sqrt{125}\) FactorVoorWortelteken (2) 0087 - Wortels vereenvoudigen - basis - 0ms c \(7\sqrt{125}=7⋅\sqrt{25}⋅\sqrt{5}=7⋅5⋅\sqrt{5}=35\sqrt{5}\text{.}\) 1p 2p d \(2\sqrt{75}-7\sqrt{12}\) Optellen (6) 0088 - Wortels vereenvoudigen - basis - 0ms d \(2\sqrt{75}-7\sqrt{12}=2⋅\sqrt{25}⋅\sqrt{3}-7⋅\sqrt{4}⋅\sqrt{3}\text{.}\) 1p ○ \(2⋅5⋅\sqrt{3}-7⋅2⋅\sqrt{3}=10\sqrt{3}-14\sqrt{3}=-4\sqrt{3}\text{.}\) 1p opgave 2Herleid. 1p \(\sqrt{\frac{1}{49}}\) BreukInWortel (1) 008b - Wortels vereenvoudigen - basis - 0ms ○ \(\sqrt{\frac{1}{49}}={\sqrt{1} \over \sqrt{49}}=\frac{1}{7}\text{.}\) 1p |
|
| 3 vwo | 5.5 Wortels herleiden |
opgave 1Herleid. 1p a \({9 \over 8\sqrt{2}}\) WortelInNoemer 0089 - Wortels vereenvoudigen - basis - 0ms a \({9 \over 8\sqrt{2}}={9 \over 8\sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={9\sqrt{2} \over 8⋅2}=\frac{9}{16}\sqrt{2}\text{.}\) 1p 1p b \(\sqrt{\frac{48}{49}}\) BreukInWortel (2) 008c - Wortels vereenvoudigen - basis - 0ms b \(\sqrt{\frac{48}{49}}={\sqrt{48} \over \sqrt{49}}={\sqrt{48} \over 7}=\frac{1}{7}\sqrt{48}=\frac{1}{7}⋅4⋅\sqrt{3}=\frac{4}{7}\sqrt{3}\text{.}\) 1p 1p c \(\sqrt{1\frac{9}{91}}\) BreukInWortel (3) 008d - Wortels vereenvoudigen - basis - 1ms c \(\sqrt{1\frac{9}{91}}=\sqrt{\frac{100}{91}}={\sqrt{100} \over \sqrt{91}}={10 \over \sqrt{91}}⋅{\sqrt{91} \over \sqrt{91}}={10\sqrt{91} \over 91}=\frac{10}{91}\sqrt{91}\text{.}\) 1p 1p d \(\sqrt{13\frac{1}{2}}\) BreukInWortel (4) 008e - Wortels vereenvoudigen - basis - 0ms d \(\sqrt{13\frac{1}{2}}=\sqrt{\frac{27}{2}}={\sqrt{27} \over \sqrt{2}}⋅{\sqrt{2} \over \sqrt{2}}={\sqrt{54} \over 2}=\frac{1}{2}\sqrt{54}=\frac{1}{2}⋅3⋅\sqrt{6}=1\frac{1}{2}\sqrt{6}\text{.}\) 1p opgave 2Herleid. 1p a \({21\sqrt{168} \over 3\sqrt{6}}\) Delen (4) 00dc - Wortels vereenvoudigen - basis - 10ms a \({21\sqrt{168} \over 3\sqrt{6}}={21 \over 3}⋅{\sqrt{168} \over \sqrt{6}}=7\sqrt{28}=7⋅\sqrt{4}⋅\sqrt{7}=7⋅2⋅\sqrt{7}=14\sqrt{7}\) 1p 1p b \(3\sqrt{5}⋅5\sqrt{10}\) Vermenigvuldigen (5) 00dd - Wortels vereenvoudigen - basis - 3ms - data pool: #22 (3ms) b \(3\sqrt{5}⋅5\sqrt{10}=15\sqrt{50}=15⋅\sqrt{25}⋅\sqrt{2}=15⋅5⋅\sqrt{2}=75\sqrt{2}\) 1p |