Getal & Ruimte (12e editie) - vwo wiskunde B
'Sinus- en cosinusregel'.
| vwo wiskunde B | 3.5 De sinusregel en de cosinusregel |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=32\text{,}\) \(\angle P=52\degree\) en \(\angle Q=82\degree\text{.}\) SinusregelZijdeInScherp 007p - Sinus- en cosinusregel - basis - 0ms a De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R={Q\kern{-.8pt}R⋅\sin(\angle Q) \over \sin(\angle P)}={32⋅\sin(82\degree) \over \sin(52\degree)}\text{.}\) 1p ○ \(P\kern{-.8pt}R≈40{,}2\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=13\text{,}\) \(\angle B=41\degree\) en \(\angle C=96\degree\text{.}\) SinusregelZijdeInStomp 007q - Sinus- en cosinusregel - basis - 0ms b De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}C \over \sin(\angle B)}={A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B={A\kern{-.8pt}C⋅\sin(\angle C) \over \sin(\angle B)}={13⋅\sin(96\degree) \over \sin(41\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}B≈19{,}7\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=19\text{,}\) \(K\kern{-.8pt}M=28\) en \(\angle K=40\degree\text{.}\) SinusregelHoekInScherp 007r - Sinus- en cosinusregel - basis - 8ms c De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle L)={K\kern{-.8pt}M⋅\sin(\angle K) \over L\kern{-.8pt}M}={28⋅\sin(40\degree) \over 19}=0{,}947...\text{.}\) 1p ○ Dit geeft \(\angle L≈71{,}3\degree\) of \(\angle L≈108{,}7\degree\text{.}\) 1p 3p d Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=7\text{,}\) \(Q\kern{-.8pt}R=10\) en \(\angle R=31\degree\text{.}\) SinusregelHoekInStomp 007s - Sinus- en cosinusregel - basis - 0ms d De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle P)={Q\kern{-.8pt}R⋅\sin(\angle R) \over P\kern{-.8pt}Q}={10⋅\sin(31\degree) \over 7}=0{,}735...\text{.}\) 1p ○ Dit geeft \(\angle P≈47{,}4\degree\) of \(\angle P≈132{,}6\degree\text{.}\) 1p opgave 24p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=30\text{,}\) \(\angle B=65\degree\) en \(\angle A=58\degree\text{.}\) SinusregelZijdeNaHoekInScherp 007t - Sinus- en cosinusregel - basis - 0ms a Uit \(\angle B+\angle C+\angle A=180\degree\) volgt \(\angle C=180\degree-\angle B-\angle A=180\degree-65\degree-58\degree=57\degree\text{.}\) 1p ○ De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}C \over \sin(\angle B)}={A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C={A\kern{-.8pt}B⋅\sin(\angle B) \over \sin(\angle C)}={30⋅\sin(65\degree) \over \sin(57\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}C≈32{,}4\text{.}\) 1p 4p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=31\text{,}\) \(\angle P=52\degree\) en \(\angle R=26\degree\text{.}\) SinusregelZijdeNaHoekInStomp 007u - Sinus- en cosinusregel - basis - 0ms b Uit \(\angle P+\angle Q+\angle R=180\degree\) volgt \(\angle Q=180\degree-\angle P-\angle R=180\degree-52\degree-26\degree=102\degree\text{.}\) 1p ○ De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R={P\kern{-.8pt}R⋅\sin(\angle P) \over \sin(\angle Q)}={31⋅\sin(52\degree) \over \sin(102\degree)}\text{.}\) 1p ○ \(Q\kern{-.8pt}R≈25{,}0\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}B=20\text{,}\) \(B\kern{-.8pt}C=27\) en \(\angle B=75\degree\text{.}\) CosinusregelZijdeInScherp 007v - Sinus- en cosinusregel - basis - 1ms c De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(A\kern{-.8pt}C^2=A\kern{-.8pt}B^2+B\kern{-.8pt}C^2-2⋅A\kern{-.8pt}B⋅B\kern{-.8pt}C⋅\cos(\angle B)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}C^2=20^2+27^2-2⋅20⋅27⋅\cos(75\degree)=849{,}475...\text{.}\) 1p ○ \(A\kern{-.8pt}C=\sqrt{849{,}475...}≈29{,}1\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=20\text{,}\) \(K\kern{-.8pt}L=21\) en \(\angle K=106\degree\text{.}\) CosinusregelZijdeInStomp 007w - Sinus- en cosinusregel - basis - 0ms d De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2=K\kern{-.8pt}M^2+K\kern{-.8pt}L^2-2⋅K\kern{-.8pt}M⋅K\kern{-.8pt}L⋅\cos(\angle K)\text{.}\) 1p ○ Dus \(L\kern{-.8pt}M^2=20^2+21^2-2⋅20⋅21⋅\cos(106\degree)=1072{,}535...\text{.}\) 1p ○ \(L\kern{-.8pt}M=\sqrt{1072{,}535...}≈32{,}7\text{.}\) 1p opgave 34p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=21\text{,}\) \(A\kern{-.8pt}B=21\) en \(B\kern{-.8pt}C=21\text{.}\) CosinusregelHoekInScherp 007x - Sinus- en cosinusregel - basis - 5ms a De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(B\kern{-.8pt}C^2=A\kern{-.8pt}C^2+A\kern{-.8pt}B^2-2⋅A\kern{-.8pt}C⋅A\kern{-.8pt}B⋅\cos(\angle A)\text{.}\) 1p ○ Invullen geeft \(21^2=21^2+21^2-2⋅21⋅21⋅\cos(\angle A)\) 1p ○ Balansmethode geeft \(\cos(\angle A)={441-882 \over -882}=0{,}5\) 1p ○ Hieruit volgt \(\angle A=\cos^{-1}(0{,}5)=60{,}0\degree\text{.}\) 1p 4p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=28\text{,}\) \(P\kern{-.8pt}Q=23\) en \(Q\kern{-.8pt}R=40\text{.}\) CosinusregelHoekInStomp 007y - Sinus- en cosinusregel - basis - 0ms b De cosinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(Q\kern{-.8pt}R^2=P\kern{-.8pt}R^2+P\kern{-.8pt}Q^2-2⋅P\kern{-.8pt}R⋅P\kern{-.8pt}Q⋅\cos(\angle P)\text{.}\) 1p ○ Invullen geeft \(40^2=28^2+23^2-2⋅28⋅23⋅\cos(\angle P)\) 1p ○ Balansmethode geeft \(\cos(\angle P)={1\,600-1\,313 \over -1\,288}=-0{,}222...\) 1p ○ Hieruit volgt \(\angle P=\cos^{-1}(-0{,}222...)≈102{,}9\degree\text{.}\) 1p |