Getal & Ruimte (12e editie) - vwo wiskunde B
'Sinus, cosinus en tangens'.
| 3 vwo | 6.3 Berekeningen met de tangens |
opgave 13p a Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=20\text{,}\) \(\angle M=42\degree\) en \(\angle K=90\degree\text{.}\) Tangens (1) 007m - Sinus, cosinus en tangens - basis - 0ms a Tangens in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\tan(\angle M)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\tan(42\degree)={K\kern{-.8pt}L \over 20}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}L=20⋅\tan(42\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L≈18{,}0\text{.}\) 1p 3p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=58\text{,}\) \(\angle P=31\degree\) en \(\angle Q=90\degree\text{.}\) Tangens (2) 007n - Sinus, cosinus en tangens - basis - 0ms b Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\tan(31\degree)={58 \over P\kern{-.8pt}Q}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}Q={58 \over \tan(31\degree)}\text{.}\) 1p ○ Dus \(P\kern{-.8pt}Q≈96{,}5\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=31\text{,}\) \(Q\kern{-.8pt}R=24\) en \(\angle Q=90\degree\text{.}\) Tangens (3) 007o - Sinus, cosinus en tangens - basis - 0ms c Tangens in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\tan(\angle P)={Q\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\tan(\angle P)={24 \over 31}\text{.}\) 1p ○ Hieruit volgt \(\angle P=\tan^{-1}({24 \over 31})\text{.}\) 1p ○ Dus \(\angle P≈37{,}7\degree\text{.}\) 1p |
|
| 3 vwo | 6.4 De sinus en de cosinus |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=73\text{,}\) \(\angle Q=46\degree\) en \(\angle R=90\degree\text{.}\) Sinus (1) 007g - Sinus, cosinus en tangens - basis - 0ms a Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle Q)={P\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\sin(46\degree)={P\kern{-.8pt}R \over 73}\text{.}\) 1p ○ Hieruit volgt \(P\kern{-.8pt}R=73⋅\sin(46\degree)\text{.}\) 1p ○ Dus \(P\kern{-.8pt}R≈52{,}5\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=54\text{,}\) \(\angle K=40\degree\) en \(\angle L=90\degree\text{.}\) Sinus (2) 007h - Sinus, cosinus en tangens - basis - 0ms b Sinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\sin(\angle K)={L\kern{-.8pt}M \over K\kern{-.8pt}M}\) ofwel \(\sin(40\degree)={54 \over K\kern{-.8pt}M}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}M={54 \over \sin(40\degree)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M≈84{,}0\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=44\text{,}\) \(P\kern{-.8pt}Q=68\) en \(\angle R=90\degree\text{.}\) Sinus (3) 007i - Sinus, cosinus en tangens - basis - 0ms c Sinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\sin(\angle Q)={P\kern{-.8pt}R \over P\kern{-.8pt}Q}\) ofwel \(\sin(\angle Q)={44 \over 68}\text{.}\) 1p ○ Hieruit volgt \(\angle Q=\sin^{-1}({44 \over 68})\text{.}\) 1p ○ Dus \(\angle Q≈40{,}3\degree\text{.}\) 1p 3p d Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=68\text{,}\) \(\angle K=40\degree\) en \(\angle L=90\degree\text{.}\) Cosinus (1) 007j - Sinus, cosinus en tangens - basis - 0ms d Cosinus in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(\cos(\angle K)={K\kern{-.8pt}L \over K\kern{-.8pt}M}\) ofwel \(\cos(40\degree)={K\kern{-.8pt}L \over 68}\text{.}\) 1p ○ Hieruit volgt \(K\kern{-.8pt}L=68⋅\cos(40\degree)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L≈52{,}1\text{.}\) 1p opgave 23p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=22\text{,}\) \(\angle R=41\degree\) en \(\angle P=90\degree\text{.}\) Cosinus (2) 007k - Sinus, cosinus en tangens - basis - 0ms a Cosinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\cos(\angle R)={P\kern{-.8pt}R \over Q\kern{-.8pt}R}\) ofwel \(\cos(41\degree)={22 \over Q\kern{-.8pt}R}\text{.}\) 1p ○ Hieruit volgt \(Q\kern{-.8pt}R={22 \over \cos(41\degree)}\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R≈29{,}2\text{.}\) 1p 3p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=44\text{,}\) \(Q\kern{-.8pt}R=71\) en \(\angle P=90\degree\text{.}\) Cosinus (3) 007l - Sinus, cosinus en tangens - basis - 0ms b Cosinus in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(\cos(\angle R)={P\kern{-.8pt}R \over Q\kern{-.8pt}R}\) ofwel \(\cos(\angle R)={44 \over 71}\text{.}\) 1p ○ Hieruit volgt \(\angle R=\cos^{-1}({44 \over 71})\text{.}\) 1p ○ Dus \(\angle R≈51{,}7\degree\text{.}\) 1p |