Getal & Ruimte (12e editie) - vwo wiskunde B

'Raaklijnen aan cirkels'.

vwo wiskunde B 7.4 Afstanden en raaklijnen bij cirkels

Raaklijnen aan cirkels (1)

opgave 1

Gegeven is de cirkel \(c{:}\,x^2+y^2-2x+4y-15=0\text{.}\)
De lijn \(l\) raakt de cirkel in het punt \(A(5, 0)\text{.}\)

4p

Stel de vergelijking van \(l\) op.

GegevenRaakpunt
00bp - Raaklijnen aan cirkels - basis - 0ms

Kwadraatafsplitsen geeft \((x-1)^2+(y+2)^2=20\)
Dus \(M(1, -2)\) en \(r=\sqrt{20}\text{.}\)

1p

De lijn \(m\) door \(M\) en \(A\) heeft \(\text{rc}_m={\Delta y \over \Delta x}={-2-0 \over 1-5}=\frac{1}{2}\text{.}\)

1p

\(\begin{rcases}l\perp m\text{, dus }\text{rc}_l⋅\text{rc}_m=-1 \\ \text{rc}_m=\frac{1}{2}\end{rcases}\text{rc}_l=-2\)

1p

\(\begin{rcases}y=-2x+b \\ \text{door }A(5, 0)\end{rcases}\begin{matrix}0=-2⋅5+b \\ 0=-10+b \\ b=10\end{matrix}\)
Dus \(l{:}\,y=-2x+10\text{.}\)

1p

"