Getal & Ruimte (12e editie) - vwo wiskunde B
'Logaritmen herleiden'.
| vwo wiskunde B | 9.1 Rekenregels voor logaritmen |
opgave 1Herleid tot één logaritme. 1p a \({}^{2}\!\log(4)+{}^{2}\!\log(3a-5)\) Optellen (1) 00ku - Logaritmen herleiden - basis - basis - 1ms - dynamic variables a \({}^{2}\!\log(4)+{}^{2}\!\log(3a-5)\) 1p 1p b \({}^{4}\!\log(2)-{}^{4}\!\log(5p+1)\) Aftrekken 00kv - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{4}\!\log(2)-{}^{4}\!\log(5p+1)\) 1p 2p c \(3⋅{}^{2}\!\log(5x)\) Vermenigvuldigen 00kw - Logaritmen herleiden - basis - midden - 1ms - dynamic variables c \(3⋅{}^{2}\!\log(5x)\) 1p ○ \(\text{ }={}^{2}\!\log(125x^3)\) 1p 2p d \(3⋅{}^{4}\!\log(x)+{}^{4}\!\log(5x+1)\) OptellenVermenigvuldigen 00kx - Logaritmen herleiden - basis - eind - 1ms - dynamic variables d \(3⋅{}^{4}\!\log(x)+{}^{4}\!\log(5x+1)\) 1p ○ \(\text{ }={}^{4}\!\log(x^3⋅(5x+1))\) 1p opgave 2Herleid tot één logaritme. 2p a \(3+{}^{2}\!\log(5a+4)\) Grondtal (1) 00ky - Logaritmen herleiden - basis - midden - 1ms - dynamic variables a \(3+{}^{2}\!\log(5a+4)\) 1p ○ \(\text{ }={}^{2}\!\log(8⋅(5a+4))\) 1p 3p b \({}^{3}\!\log(243)+{}^{2}\!\log(x+4)\) Grondtal (2) 00kz - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{3}\!\log(243)+{}^{2}\!\log(x+4)\) 1p ○ \(\text{ }={}^{2}\!\log(2^5)+{}^{2}\!\log(x+4)\) 1p ○ \(\text{ }={}^{2}\!\log(32⋅(x+4))\) 1p |