Getal & Ruimte (12e editie) - vwo wiskunde B
'Logaritmen herleiden'.
| vwo wiskunde B | 9.1 Rekenregels voor logaritmen |
opgave 1Herleid tot één logaritme. 1p a \({}^{3}\!\log(5x)+{}^{3}\!\log(2x-1)\) Optellen (1) 00ku - Logaritmen herleiden - basis - basis - 1ms - dynamic variables a \({}^{3}\!\log(5x)+{}^{3}\!\log(2x-1)\) 1p 1p b \({}^{2}\!\log(4)-{}^{2}\!\log(5x-1)\) Aftrekken 00kv - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{2}\!\log(4)-{}^{2}\!\log(5x-1)\) 1p 2p c \(4⋅{}^{2}\!\log(5a)\) Vermenigvuldigen 00kw - Logaritmen herleiden - basis - midden - 1ms - dynamic variables c \(4⋅{}^{2}\!\log(5a)\) 1p ○ \(\text{ }={}^{2}\!\log(625a^4)\) 1p 2p d \(3⋅{}^{2}\!\log(p)+{}^{2}\!\log(5p+4)\) OptellenVermenigvuldigen 00kx - Logaritmen herleiden - basis - eind - 1ms - dynamic variables d \(3⋅{}^{2}\!\log(p)+{}^{2}\!\log(5p+4)\) 1p ○ \(\text{ }={}^{2}\!\log(p^3⋅(5p+4))\) 1p opgave 2Herleid tot één logaritme. 2p a \(5+{}^{3}\!\log(2a+4)\) Grondtal (1) 00ky - Logaritmen herleiden - basis - midden - 1ms - dynamic variables a \(5+{}^{3}\!\log(2a+4)\) 1p ○ \(\text{ }={}^{3}\!\log(243⋅(2a+4))\) 1p 3p b \({}^{2}\!\log(32)+{}^{3}\!\log(4p-1)\) Grondtal (2) 00kz - Logaritmen herleiden - basis - eind - 1ms - dynamic variables b \({}^{2}\!\log(32)+{}^{3}\!\log(4p-1)\) 1p ○ \(\text{ }={}^{3}\!\log(3^5)+{}^{3}\!\log(4p-1)\) 1p ○ \(\text{ }={}^{3}\!\log(243⋅(4p-1))\) 1p |