Getal & Ruimte (12e editie) - vwo wiskunde B

'Groeifactor omzetten naar een andere tijdseenheid'.

vwo wiskunde B 9.2 Exponentiële en logaritmische functies

Groeifactor omzetten naar een andere tijdseenheid (5)

opgave 1

Een hoeveelheid neemt per 10 seconden met \(1{,}2\%\) toe.

3p

Bereken de procentuele toename per minuut.

ToenameNaarLangerePeriode
005u - Groeifactor omzetten naar een andere tijdseenheid - basis - 1ms

\(g_{\text{10 seconden}}={1{,}2 \over 100}+1=1{,}012\)

1p

\(g_{\text{minuut}}=g_{\text{10 seconden}}^6=1{,}012^6=1{,}074...\)

1p

De toename is \((1{,}074...-1)×100\%=7{,}4\%\) per minuut.

1p

opgave 2

Een hoeveelheid neemt per minuut met \(1{,}1\%\) af.

3p

Bereken de procentuele afname per 5 minuten.

AfnameNaarLangerePeriode
005v - Groeifactor omzetten naar een andere tijdseenheid - basis - 1ms

\(g_{\text{minuut}}={-1{,}1 \over 100}+1=0{,}989\)

1p

\(g_{\text{5 minuten}}=g_{\text{minuut}}^5=0{,}989^5=0{,}946...\)

1p

De toename is \((0{,}946...-1)×100\%=-5{,}4\%\) dus een afname van \(5{,}4\%\) per 5 minuten.

1p

opgave 3

Een hoeveelheid neemt per week met \(15{,}7\%\) toe.

3p

Bereken de procentuele toename per dag.

ToenameNaarKorterePeriode
005w - Groeifactor omzetten naar een andere tijdseenheid - basis - 1ms

\(g_{\text{week}}={15{,}7 \over 100}+1=1{,}157\)

1p

\(g_{\text{dag}}=g_{\text{week}}^{\frac{1}{7}}=1{,}157^{\frac{1}{7}}=1{,}021...\)

1p

De toename is \((1{,}021...-1)×100\%=2{,}1\%\) per dag.

1p

opgave 4

Een hoeveelheid neemt per 4 weken met \(10{,}4\%\) af.

3p

Bereken de procentuele afname per week.

AfnameNaarKorterePeriode
005x - Groeifactor omzetten naar een andere tijdseenheid - basis - 1ms

\(g_{\text{4 weken}}={-10{,}4 \over 100}+1=0{,}896\)

1p

\(g_{\text{week}}=g_{\text{4 weken}}^{\frac{1}{4}}=0{,}896^{\frac{1}{4}}=0{,}972...\)

1p

De toename is \((0{,}972...-1)×100\%=-2{,}7\%\) dus een afname van \(2{,}7\%\) per week.

1p

opgave 5

Hoeveelheid \(A\) wordt elke \(8\) uur \(4{,}9\) keer zo groot, hoeveelheid \(B\) groeit iedere \(5\) uur met een factor \(2{,}5\text{.}\)

3p

Welke hoeveelheid groeit het snelst?

GroeiVergelijken
00kk - Groeifactor omzetten naar een andere tijdseenheid - basis - 49ms - data pool: #11364 (49ms)

Voor hoeveelheid \(A\) geldt \(g_A=4{,}9^{{1 \over 8}}=1{,}219...\)

1p

Voor hoeveelheid \(B\) geldt \(g_B=2{,}5^{{1 \over 5}}=1{,}201...\)

1p

Er geldt \(g_A>g_B\text{,}\) dus hoeveelheid \(A\) groeit het snelst.

1p

"