Getal & Ruimte (12e editie) - vwo wiskunde A
'Stelsels oplossen'.
| vwo wiskunde A | k.1 Stelsels van lineaire vergelijkingen |
opgave 1Los exact op. 3p a \(\begin{cases}6p-2q=-2 \\ 2p-2q=4\end{cases}\) Eliminatie (1) 003f - Stelsels oplossen - basis - 304ms - dynamic variables a Aftrekken geeft \(4p=-6\text{,}\) dus \(p=-1\frac{1}{2}\text{.}\) 1p ○ \(\begin{rcases}6p-2q=-2 \\ p=-1\frac{1}{2}\end{rcases}\begin{matrix}6⋅-1\frac{1}{2}-2q=-2 \\ -2q=7 \\ q=-3\frac{1}{2}\end{matrix}\) 1p ○ De oplossing is \((p, q)=(-1\frac{1}{2}, -3\frac{1}{2})\text{.}\) 1p 4p b \(\begin{cases}3x-y=-1 \\ 5x+3y=-4\end{cases}\) Eliminatie (2) 003g - Stelsels oplossen - basis - 8ms - dynamic variables b \(\begin{cases}3x-y=-1 \\ 5x+3y=-4\end{cases}\) \(\begin{vmatrix}3 \\ 1\end{vmatrix}\) geeft \(\begin{cases}9x-3y=-3 \\ 5x+3y=-4\end{cases}\) 1p ○ Optellen geeft \(14x=-7\text{,}\) dus \(x=-\frac{1}{2}\text{.}\) 1p ○ \(\begin{rcases}3x-y=-1 \\ x=-\frac{1}{2}\end{rcases}\begin{matrix}3⋅-\frac{1}{2}-y=-1 \\ -y=\frac{1}{2} \\ y=-\frac{1}{2}\end{matrix}\) 1p ○ De oplossing is \((x, y)=(-\frac{1}{2}, -\frac{1}{2})\text{.}\) 1p 4p c \(\begin{cases}6a+4b=3 \\ 4a+6b=-3\end{cases}\) Eliminatie (3) 003h - Stelsels oplossen - basis - 8ms - dynamic variables c \(\begin{cases}6a+4b=3 \\ 4a+6b=-3\end{cases}\) \(\begin{vmatrix}3 \\ 2\end{vmatrix}\) geeft \(\begin{cases}18a+12b=9 \\ 8a+12b=-6\end{cases}\) 1p ○ Aftrekken geeft \(10a=15\text{,}\) dus \(a=1\frac{1}{2}\text{.}\) 1p ○ \(\begin{rcases}6a+4b=3 \\ a=1\frac{1}{2}\end{rcases}\begin{matrix}6⋅1\frac{1}{2}+4b=3 \\ 4b=-6 \\ b=-1\frac{1}{2}\end{matrix}\) 1p ○ De oplossing is \((a, b)=(1\frac{1}{2}, -1\frac{1}{2})\text{.}\) 1p opgave 2De lijnen \(k{:}\,4x+2y=4\) en \(l{:}\,2x-y=0\) snijden elkaar in het punt \(S\text{.}\) 4p Bereken de coördinaten van \(S\text{.}\) SnijpuntVanTweeLijnen (1) 00bs - Stelsels oplossen - basis - 218ms - data pool: #928 (218ms) ○ \(\begin{cases}4x+2y=4 \\ 2x-y=0\end{cases}\) \(\begin{vmatrix}1 \\ 2\end{vmatrix}\) geeft \(\begin{cases}4x+2y=4 \\ 4x-2y=0\end{cases}\) 1p ○ Optellen geeft \(8x=4\) dus \(x=\frac{1}{2}\text{.}\) 1p ○ \(\begin{rcases}4x+2y=4 \\ x=\frac{1}{2}\end{rcases}\begin{matrix}4⋅\frac{1}{2}+2y=4 \\ 2y=2 \\ y=1\end{matrix}\) 1p ○ Dus \(S(\frac{1}{2}, 1)\text{.}\) 1p |