Getal & Ruimte (12e editie) - havo wiskunde B
'Stelling van Pythagoras'.
| 2 havo/vwo | 6.2 Schuine zijden berekenen |
opgave 1Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=43\text{,}\) \(K\kern{-.8pt}M=17\) en \(\angle \text{M}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(K\kern{-.8pt}L\text{.}\) Pythagoras (1) 007c - Stelling van Pythagoras - basis - 1ms ○ Pythagoras in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(L\kern{-.8pt}M^2+K\kern{-.8pt}M^2=K\kern{-.8pt}L^2\text{.}\) 1p ○ \(K\kern{-.8pt}L^2=43^2+17^2=2\,138\text{.}\) 1p ○ \(K\kern{-.8pt}L=\sqrt{2\,138}≈46{,}2\text{.}\) 1p |
|
| 2 havo/vwo | 6.3 Rechthoekszijden berekenen |
opgave 1Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(K\kern{-.8pt}M=31\text{,}\) \(L\kern{-.8pt}M=39\) en \(\angle \text{K}=90\degree\text{.}\) 3p Bereken de lengte van zijde \(K\kern{-.8pt}L\text{.}\) Pythagoras (2) 007d - Stelling van Pythagoras - basis - 0ms ○ Pythagoras in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}M^2+K\kern{-.8pt}L^2=L\kern{-.8pt}M^2\) ofwel \(31^2+K\kern{-.8pt}L^2=39^2\text{.}\) 1p ○ \(K\kern{-.8pt}L^2=39^2-31^2=560\text{.}\) 1p ○ \(K\kern{-.8pt}L=\sqrt{560}≈23{,}7\text{.}\) 1p |