Getal & Ruimte (12e editie) - havo wiskunde B
'Sinus- en cosinusregel'.
| havo wiskunde B | 3.2 De sinusregel en de cosinusregel |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=16\text{,}\) \(\angle Q=64\degree\) en \(\angle R=82\degree\text{.}\) SinusregelZijdeInScherp 007p - Sinus- en cosinusregel - basis - 0ms a De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}\text{.}\) 1p ○ Dus \(P\kern{-.8pt}Q={P\kern{-.8pt}R⋅\sin(\angle R) \over \sin(\angle Q)}={16⋅\sin(82\degree) \over \sin(64\degree)}\text{.}\) 1p ○ \(P\kern{-.8pt}Q≈17{,}6\text{.}\) 1p 3p b Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=22\text{,}\) \(\angle B=32\degree\) en \(\angle C=122\degree\text{.}\) SinusregelZijdeInStomp 007q - Sinus- en cosinusregel - basis - 0ms b De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}C \over \sin(\angle B)}={A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B={A\kern{-.8pt}C⋅\sin(\angle C) \over \sin(\angle B)}={22⋅\sin(122\degree) \over \sin(32\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}B≈35{,}2\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=8\text{,}\) \(P\kern{-.8pt}Q=15\) en \(\angle Q=29\degree\text{.}\) SinusregelHoekInScherp 007r - Sinus- en cosinusregel - basis - 5ms c De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle R)={P\kern{-.8pt}Q⋅\sin(\angle Q) \over P\kern{-.8pt}R}={15⋅\sin(29\degree) \over 8}=0{,}909...\text{.}\) 1p ○ Dit geeft \(\angle R≈65{,}4\degree\) of \(\angle R≈114{,}6\degree\text{.}\) 1p 3p d Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=13\text{,}\) \(Q\kern{-.8pt}R=23\) en \(\angle R=25\degree\text{.}\) SinusregelHoekInStomp 007s - Sinus- en cosinusregel - basis - 0ms d De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle P)={Q\kern{-.8pt}R⋅\sin(\angle R) \over P\kern{-.8pt}Q}={23⋅\sin(25\degree) \over 13}=0{,}747...\text{.}\) 1p ○ Dit geeft \(\angle P≈48{,}4\degree\) of \(\angle P≈131{,}6\degree\text{.}\) 1p opgave 24p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=27\text{,}\) \(\angle C=50\degree\) en \(\angle B=41\degree\text{.}\) SinusregelZijdeNaHoekInScherp 007t - Sinus- en cosinusregel - basis - 0ms a Uit \(\angle C+\angle A+\angle B=180\degree\) volgt \(\angle A=180\degree-\angle C-\angle B=180\degree-50\degree-41\degree=89\degree\text{.}\) 1p ○ De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B={B\kern{-.8pt}C⋅\sin(\angle C) \over \sin(\angle A)}={27⋅\sin(50\degree) \over \sin(89\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}B≈20{,}7\text{.}\) 1p 4p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=49\text{,}\) \(\angle R=34\degree\) en \(\angle Q=33\degree\text{.}\) SinusregelZijdeNaHoekInStomp 007u - Sinus- en cosinusregel - basis - 0ms b Uit \(\angle R+\angle P+\angle Q=180\degree\) volgt \(\angle P=180\degree-\angle R-\angle Q=180\degree-34\degree-33\degree=113\degree\text{.}\) 1p ○ De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}\text{.}\) 1p ○ Dus \(P\kern{-.8pt}Q={Q\kern{-.8pt}R⋅\sin(\angle R) \over \sin(\angle P)}={49⋅\sin(34\degree) \over \sin(113\degree)}\text{.}\) 1p ○ \(P\kern{-.8pt}Q≈29{,}8\text{.}\) 1p 3p c Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=23\text{,}\) \(P\kern{-.8pt}Q=27\) en \(\angle P=76\degree\text{.}\) CosinusregelZijdeInScherp 007v - Sinus- en cosinusregel - basis - 0ms c De cosinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(Q\kern{-.8pt}R^2=P\kern{-.8pt}R^2+P\kern{-.8pt}Q^2-2⋅P\kern{-.8pt}R⋅P\kern{-.8pt}Q⋅\cos(\angle P)\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R^2=23^2+27^2-2⋅23⋅27⋅\cos(76\degree)=957{,}533...\text{.}\) 1p ○ \(Q\kern{-.8pt}R=\sqrt{957{,}533...}≈30{,}9\text{.}\) 1p 3p d Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(Q\kern{-.8pt}R=10\text{,}\) \(P\kern{-.8pt}R=19\) en \(\angle R=101\degree\text{.}\) CosinusregelZijdeInStomp 007w - Sinus- en cosinusregel - basis - 0ms d De cosinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}Q^2=Q\kern{-.8pt}R^2+P\kern{-.8pt}R^2-2⋅Q\kern{-.8pt}R⋅P\kern{-.8pt}R⋅\cos(\angle R)\text{.}\) 1p ○ Dus \(P\kern{-.8pt}Q^2=10^2+19^2-2⋅10⋅19⋅\cos(101\degree)=533{,}507...\text{.}\) 1p ○ \(P\kern{-.8pt}Q=\sqrt{533{,}507...}≈23{,}1\text{.}\) 1p opgave 34p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(A\kern{-.8pt}C=17\text{,}\) \(A\kern{-.8pt}B=28\) en \(B\kern{-.8pt}C=31\text{.}\) CosinusregelHoekInScherp 007x - Sinus- en cosinusregel - basis - 5ms a De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(B\kern{-.8pt}C^2=A\kern{-.8pt}C^2+A\kern{-.8pt}B^2-2⋅A\kern{-.8pt}C⋅A\kern{-.8pt}B⋅\cos(\angle A)\text{.}\) 1p ○ Invullen geeft \(31^2=17^2+28^2-2⋅17⋅28⋅\cos(\angle A)\) 1p ○ Balansmethode geeft \(\cos(\angle A)={961-1\,073 \over -952}=0{,}117...\) 1p ○ Hieruit volgt \(\angle A=\cos^{-1}(0{,}117...)≈83{,}2\degree\text{.}\) 1p 4p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=23\text{,}\) \(P\kern{-.8pt}Q=15\) en \(Q\kern{-.8pt}R=28\text{.}\) CosinusregelHoekInStomp 007y - Sinus- en cosinusregel - basis - 0ms b De cosinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(Q\kern{-.8pt}R^2=P\kern{-.8pt}R^2+P\kern{-.8pt}Q^2-2⋅P\kern{-.8pt}R⋅P\kern{-.8pt}Q⋅\cos(\angle P)\text{.}\) 1p ○ Invullen geeft \(28^2=23^2+15^2-2⋅23⋅15⋅\cos(\angle P)\) 1p ○ Balansmethode geeft \(\cos(\angle P)={784-754 \over -690}=-0{,}043...\) 1p ○ Hieruit volgt \(\angle P=\cos^{-1}(-0{,}043...)≈92{,}5\degree\text{.}\) 1p |