Getal & Ruimte (12e editie) - havo wiskunde B
'Sinus- en cosinusregel'.
| havo wiskunde B | 3.2 De sinusregel en de cosinusregel |
opgave 13p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=21\text{,}\) \(\angle R=50\degree\) en \(\angle P=82\degree\text{.}\) SinusregelZijdeInScherp 007p - Sinus- en cosinusregel - basis - 0ms a De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R={P\kern{-.8pt}Q⋅\sin(\angle P) \over \sin(\angle R)}={21⋅\sin(82\degree) \over \sin(50\degree)}\text{.}\) 1p ○ \(Q\kern{-.8pt}R≈27{,}1\text{.}\) 1p 3p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=10\text{,}\) \(\angle K=25\degree\) en \(\angle L=102\degree\text{.}\) SinusregelZijdeInStomp 007q - Sinus- en cosinusregel - basis - 0ms b De sinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \({L\kern{-.8pt}M \over \sin(\angle K)}={K\kern{-.8pt}M \over \sin(\angle L)}={K\kern{-.8pt}L \over \sin(\angle M)}\text{.}\) 1p ○ Dus \(K\kern{-.8pt}M={L\kern{-.8pt}M⋅\sin(\angle L) \over \sin(\angle K)}={10⋅\sin(102\degree) \over \sin(25\degree)}\text{.}\) 1p ○ \(K\kern{-.8pt}M≈23{,}1\text{.}\) 1p 3p c Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=10\text{,}\) \(A\kern{-.8pt}C=16\) en \(\angle A=28\degree\text{.}\) SinusregelHoekInScherp 007r - Sinus- en cosinusregel - basis - 8ms c De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}={A\kern{-.8pt}B \over \sin(\angle C)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle B)={A\kern{-.8pt}C⋅\sin(\angle A) \over B\kern{-.8pt}C}={16⋅\sin(28\degree) \over 10}=0{,}751...\text{.}\) 1p ○ Dit geeft \(\angle B≈48{,}7\degree\) of \(\angle B≈131{,}3\degree\text{.}\) 1p 3p d Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=8\text{,}\) \(P\kern{-.8pt}Q=12\) en \(\angle Q=33\degree\text{.}\) SinusregelHoekInStomp 007s - Sinus- en cosinusregel - basis - 0ms d De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}={Q\kern{-.8pt}R \over \sin(\angle P)}\text{.}\) 1p ○ Daaruit volgt \(\sin(\angle R)={P\kern{-.8pt}Q⋅\sin(\angle Q) \over P\kern{-.8pt}R}={12⋅\sin(33\degree) \over 8}=0{,}816...\text{.}\) 1p ○ Dit geeft \(\angle R≈54{,}8\degree\) of \(\angle R≈125{,}2\degree\text{.}\) 1p opgave 24p a Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=48\text{,}\) \(\angle C=37\degree\) en \(\angle B=56\degree\text{.}\) SinusregelZijdeNaHoekInScherp 007t - Sinus- en cosinusregel - basis - 0ms a Uit \(\angle C+\angle A+\angle B=180\degree\) volgt \(\angle A=180\degree-\angle C-\angle B=180\degree-37\degree-56\degree=87\degree\text{.}\) 1p ○ De sinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \({A\kern{-.8pt}B \over \sin(\angle C)}={B\kern{-.8pt}C \over \sin(\angle A)}={A\kern{-.8pt}C \over \sin(\angle B)}\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B={B\kern{-.8pt}C⋅\sin(\angle C) \over \sin(\angle A)}={48⋅\sin(37\degree) \over \sin(87\degree)}\text{.}\) 1p ○ \(A\kern{-.8pt}B≈28{,}9\text{.}\) 1p 4p b Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}R=20\text{,}\) \(\angle P=41\degree\) en \(\angle R=26\degree\text{.}\) SinusregelZijdeNaHoekInStomp 007u - Sinus- en cosinusregel - basis - 0ms b Uit \(\angle P+\angle Q+\angle R=180\degree\) volgt \(\angle Q=180\degree-\angle P-\angle R=180\degree-41\degree-26\degree=113\degree\text{.}\) 1p ○ De sinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \({Q\kern{-.8pt}R \over \sin(\angle P)}={P\kern{-.8pt}R \over \sin(\angle Q)}={P\kern{-.8pt}Q \over \sin(\angle R)}\text{.}\) 1p ○ Dus \(Q\kern{-.8pt}R={P\kern{-.8pt}R⋅\sin(\angle P) \over \sin(\angle Q)}={20⋅\sin(41\degree) \over \sin(113\degree)}\text{.}\) 1p ○ \(Q\kern{-.8pt}R≈14{,}3\text{.}\) 1p 3p c Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=23\text{,}\) \(K\kern{-.8pt}M=23\) en \(\angle M=71\degree\text{.}\) CosinusregelZijdeInScherp 007v - Sinus- en cosinusregel - basis - 1ms c De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}L^2=L\kern{-.8pt}M^2+K\kern{-.8pt}M^2-2⋅L\kern{-.8pt}M⋅K\kern{-.8pt}M⋅\cos(\angle M)\text{.}\) 1p ○ Dus \(K\kern{-.8pt}L^2=23^2+23^2-2⋅23⋅23⋅\cos(71\degree)=713{,}548...\text{.}\) 1p ○ \(K\kern{-.8pt}L=\sqrt{713{,}548...}≈26{,}7\text{.}\) 1p 3p d Gegeven is \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) met \(B\kern{-.8pt}C=20\text{,}\) \(A\kern{-.8pt}C=12\) en \(\angle C=96\degree\text{.}\) CosinusregelZijdeInStomp 007w - Sinus- en cosinusregel - basis - 0ms d De cosinusregel in \(\triangle A\kern{-.8pt}B\kern{-.8pt}C\) geeft \(A\kern{-.8pt}B^2=B\kern{-.8pt}C^2+A\kern{-.8pt}C^2-2⋅B\kern{-.8pt}C⋅A\kern{-.8pt}C⋅\cos(\angle C)\text{.}\) 1p ○ Dus \(A\kern{-.8pt}B^2=20^2+12^2-2⋅20⋅12⋅\cos(96\degree)=594{,}173...\text{.}\) 1p ○ \(A\kern{-.8pt}B=\sqrt{594{,}173...}≈24{,}4\text{.}\) 1p opgave 34p a Gegeven is \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) met \(P\kern{-.8pt}Q=16\text{,}\) \(Q\kern{-.8pt}R=20\) en \(P\kern{-.8pt}R=22\text{.}\) CosinusregelHoekInScherp 007x - Sinus- en cosinusregel - basis - 5ms a De cosinusregel in \(\triangle P\kern{-.8pt}Q\kern{-.8pt}R\) geeft \(P\kern{-.8pt}R^2=P\kern{-.8pt}Q^2+Q\kern{-.8pt}R^2-2⋅P\kern{-.8pt}Q⋅Q\kern{-.8pt}R⋅\cos(\angle Q)\text{.}\) 1p ○ Invullen geeft \(22^2=16^2+20^2-2⋅16⋅20⋅\cos(\angle Q)\) 1p ○ Balansmethode geeft \(\cos(\angle Q)={484-656 \over -640}=0{,}268...\) 1p ○ Hieruit volgt \(\angle Q=\cos^{-1}(0{,}268...)≈74{,}4\degree\text{.}\) 1p 4p b Gegeven is \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) met \(L\kern{-.8pt}M=28\text{,}\) \(K\kern{-.8pt}M=47\) en \(K\kern{-.8pt}L=55\text{.}\) CosinusregelHoekInStomp 007y - Sinus- en cosinusregel - basis - 0ms b De cosinusregel in \(\triangle K\kern{-.8pt}L\kern{-.8pt}M\) geeft \(K\kern{-.8pt}L^2=L\kern{-.8pt}M^2+K\kern{-.8pt}M^2-2⋅L\kern{-.8pt}M⋅K\kern{-.8pt}M⋅\cos(\angle M)\text{.}\) 1p ○ Invullen geeft \(55^2=28^2+47^2-2⋅28⋅47⋅\cos(\angle M)\) 1p ○ Balansmethode geeft \(\cos(\angle M)={3\,025-2\,993 \over -2\,632}=-0{,}012...\) 1p ○ Hieruit volgt \(\angle M=\cos^{-1}(-0{,}012...)≈90{,}7\degree\text{.}\) 1p |