Getal & Ruimte (12e editie) - havo wiskunde B

'Goniometrische vergelijkingen'.

havo wiskunde B 8.4 Goniometrische vergelijkingen

Goniometrische vergelijkingen (7)

opgave 1

Bereken zo mogelijk exact de oplossingen in \([0, 2\pi ]\text{.}\)

3p

a

\(\sin(2x-\frac{1}{6}\pi )=0\)

ExacteWaarde (0)
004f - Goniometrische vergelijkingen - basis - 41ms - dynamic variables

a

De exacte waardencirkel geeft
\(2x-\frac{1}{6}\pi =k⋅\pi \)

1p

\(2x=\frac{1}{6}\pi +k⋅\pi \)
\(x=\frac{1}{12}\pi +k⋅\frac{1}{2}\pi \)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=\frac{1}{12}\pi ∨x=\frac{7}{12}\pi ∨x=1\frac{1}{12}\pi ∨x=1\frac{7}{12}\pi \)

1p

4p

b

\(-5\cos(1\frac{1}{2}x-\frac{1}{6}\pi )=-2\frac{1}{2}\)

ExacteWaarde (1)
004g - Goniometrische vergelijkingen - basis - 1ms - dynamic variables

b

Balansmethode geeft \(\cos(1\frac{1}{2}x-\frac{1}{6}\pi )=\frac{1}{2}\text{.}\)

1p

De exacte waardencirkel geeft
\(1\frac{1}{2}x-\frac{1}{6}\pi =\frac{1}{3}\pi +k⋅2\pi ∨1\frac{1}{2}x-\frac{1}{6}\pi =-\frac{1}{3}\pi +k⋅2\pi \)

1p

\(1\frac{1}{2}x=\frac{1}{2}\pi +k⋅2\pi ∨1\frac{1}{2}x=-\frac{1}{6}\pi +k⋅2\pi \)
\(x=\frac{1}{3}\pi +k⋅1\frac{1}{3}\pi ∨x=-\frac{1}{9}\pi +k⋅1\frac{1}{3}\pi \)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=\frac{1}{3}\pi ∨x=1\frac{2}{3}\pi ∨x=1\frac{2}{9}\pi \)

1p

4p

c

\(-4\sin(\frac{2}{3}x+\frac{1}{4}\pi )=-2\sqrt{2}\)

ExacteWaarde (2)
004h - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

c

Balansmethode geeft \(\sin(\frac{2}{3}x+\frac{1}{4}\pi )=\frac{1}{2}\sqrt{2}\text{.}\)

1p

De exacte waardencirkel geeft
\(\frac{2}{3}x+\frac{1}{4}\pi =\frac{1}{4}\pi +k⋅2\pi ∨\frac{2}{3}x+\frac{1}{4}\pi =\frac{3}{4}\pi +k⋅2\pi \)

1p

\(\frac{2}{3}x=k⋅2\pi ∨\frac{2}{3}x=\frac{1}{2}\pi +k⋅2\pi \)
\(x=k⋅3\pi ∨x=\frac{3}{4}\pi +k⋅3\pi \)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=0∨x=\frac{3}{4}\pi \)

1p

4p

d

\(-2\cos(\frac{4}{5}\pi x-\frac{1}{6}\pi )=\sqrt{3}\)

ExacteWaarde (3)
006x - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

d

Balansmethode geeft \(\cos(\frac{4}{5}\pi x-\frac{1}{6}\pi )=-\frac{1}{2}\sqrt{3}\text{.}\)

1p

De exacte waardencirkel geeft
\(\frac{4}{5}\pi x-\frac{1}{6}\pi =\frac{5}{6}\pi +k⋅2\pi ∨\frac{4}{5}\pi x-\frac{1}{6}\pi =-\frac{5}{6}\pi +k⋅2\pi \)

1p

\(\frac{4}{5}\pi x=\pi +k⋅2\pi ∨\frac{4}{5}\pi x=-\frac{2}{3}\pi +k⋅2\pi \)
\(x=1\frac{1}{4}+k⋅2\frac{1}{2}∨x=-\frac{5}{6}+k⋅2\frac{1}{2}\)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=1\frac{1}{4}∨x=3\frac{3}{4}∨x=6\frac{1}{4}∨x=1\frac{2}{3}∨x=4\frac{1}{6}\)

1p

opgave 2

Bereken zo mogelijk exact de oplossingen in \([0, 2\pi ]\text{.}\)

4p

\(-3-4\sin(1\frac{1}{2}x-\frac{2}{3}\pi )=1\)

ExacteWaarde (4)
006y - Goniometrische vergelijkingen - basis - 1ms - dynamic variables

Balansmethode geeft \(-4\sin(1\frac{1}{2}x-\frac{2}{3}\pi )=4\) dus \(\sin(1\frac{1}{2}x-\frac{2}{3}\pi )=-1\text{.}\)

1p

De exacte waardencirkel geeft
\(1\frac{1}{2}x-\frac{2}{3}\pi =1\frac{1}{2}\pi +k⋅2\pi \)

1p

\(1\frac{1}{2}x=2\frac{1}{6}\pi +k⋅2\pi \)
\(x=1\frac{4}{9}\pi +k⋅1\frac{1}{3}\pi \)

1p

\(x\) in \([0, 2\pi ]\) geeft \(x=1\frac{4}{9}\pi ∨x=\frac{1}{9}\pi \)

1p

opgave 3

Los exact op.

3p

a

\(\sin^2(3x)=1\)

Kwadraat
006z - Goniometrische vergelijkingen - basis - 0ms - dynamic variables

a

\(\sin(3x)=1∨\sin(3x)=-1\)

1p

De exacte waardencirkel geeft
\(3x=\frac{1}{2}\pi +k⋅2\pi ∨3x=1\frac{1}{2}\pi +k⋅2\pi \)

1p

\(3x=\frac{1}{2}\pi +k⋅2\pi ∨3x=1\frac{1}{2}\pi +k⋅2\pi \)
\(x=\frac{1}{6}\pi +k⋅\frac{2}{3}\pi ∨x=\frac{1}{2}\pi +k⋅\frac{2}{3}\pi \)

1p

3p

b

\(\frac{2}{5}\sin(1\frac{1}{2}x-\frac{3}{5}\pi )\sin(1\frac{1}{2}x)=0\)

ProductIsNul
0070 - Goniometrische vergelijkingen - basis - 1ms - dynamic variables

b

\(\sin(1\frac{1}{2}x-\frac{3}{5}\pi )=0∨\sin(1\frac{1}{2}x)=0\)

1p

De exacte waardencirkel geeft
\(1\frac{1}{2}x-\frac{3}{5}\pi =k⋅\pi ∨1\frac{1}{2}x=k⋅\pi \)

1p

\(1\frac{1}{2}x=\frac{3}{5}\pi +k⋅\pi ∨1\frac{1}{2}x=k⋅\pi \)
\(x=\frac{2}{5}\pi +k⋅\frac{2}{3}\pi ∨x=k⋅\frac{2}{3}\pi \)

1p

"